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OPTICAL NEURAL NETS
FOR SCENE ANALYSIS

ABSTRACT

Our objective is to develop new neural net algorithms and architectures for scene analysis
and to demonstrate them on a fabricated new hardware laboratory neural net. Our approach
marries pattern recognition and neural net techniques and optical/digital technologies. Our
hardware laboratory system uses digital and optical neural net hardware in an analog neural net.
Our algorithms are intended to be useful on such low accuracy analog hardware. Our algorithms
cover a wide range of neural net algorithms and architectures. These can all be utilized on the
same laboratory hardware. Our algorithms include five new optimization neural nets (matrix-
inversion, mixture, multitarget tracking, symbolic, and production system neural nets) and an
adaptive neural net (adaptive clustering neural net). / ,
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1. INTRODUCTION

1.1 OBJECTIVE

Our objective is to produce new neural net algorithms and architectures for use in scene
analysis. We also intend to demonstrate these algorithms in real-time on a new hybrid
laboratory system. We consider a number of optimization neural nets and one adaptive neural

net. A unique aspect of our work is that all of these neural net algorithms can be implemented
in real-time on the same multifunctional neural net hardware laboratory system. Another unique
aspect of our work is its attention to marrying both pattern recognition and neural net

techniques. We view a major property of neural nets to be their ability to produce nonlinear
decision surfaces (as are needed for difficult pattern recognition problems - those for which

neural nets are required).

1.2 APPROACH

Our approach is hybrid and multidisciplinary. We marry pattern recognition and neural
net techniques. We also marry optical and digital technologies. A hybrid neural net thus
results. We also concentrate on the use of one basic hybrid architecture that is useful for
implementing various optimization and adaptive neural nets. Our work thus distinguishes
between these two general classes of neural nets (optimization and adaptive) with both being
realizable on the same basic hybrid architecture.

1.3 OVERVIEW

Chapter 2 provides an overview of our processor with attention to its multifunctional
nature and its general architecture. Chapter 3 details the present status of the system, and our
present simulation status of it for one specific neural net (mixture neural net). This is the first
meaningful neural net simulation.

Chapters 4-9 then detail our five specific optimization neural nets. Chapter 4 presents our
mixture neural net (applied to an imaging spectrometer case study). Chapters 5 and 6 present
our multitarget tracking neural net work with attention to a cubic energy neural net (Chapter 5)
and a preferable quadratic energy neural net (Chapter 6) requiring a simpler optical processor.
Chapters 7-9 summarize simulated (Chapter 7) and laboratory (Chapter 8) data on our symbolic
and production system neural nets based on our initial concepts (Chapter 9).

Our adaptive neural net research is included in our extensive summary of problems in
present neural nets and a new adaptive clustering neural net using pattern recognition and
neural net techniques (Chapter 10).

Section 1.4 provides a summary of the various neural nets we have considered. Papers
published and submitted during the first year of this project follow in Section 1.5. These 10
papers represent an enormous one year output and indicate the completeness with which we have
treated all aspects of neural nets for scene analysis with attention to new algorithms and
applications, a combination of optical/digital techniques for implementation, a multifunctional
hybrid optical/digital neural net architecture, its laboratory realization and a new adaptive
clustering neural net algorithm (combining pattern recognition and neural net techniques). This
effort is thus quite significant in terms of algorithms, architectures, and hardware.
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1.4 SUMMARY OF NEURAL NETS (NNs) CONSIDERED

The seven neural nets we have considered are now briefly summarized.

The input neurons to the production system NN are facts (antecedents and consequents).
Objects and object parts are used in our initial work. Surface types for object parts (cylinder,
sphere, valley, ridge, etc.) can also be used in future work. The objects are typical of those
present in various scenes. The weights define the rules. These are initially posed as if-then
statements, with all rules written as the AND of several antecedents and the OR of several such
sets of antecedents. The output neurons that fire represent the new facts that are now learned to
be true. As the system iterates, it learns new rules and infers new results on the present input
data. We initially consider a propositional calculus system (with all parameters being exact
terms) and then plan to address a predicate calculus system (with parameters being variables)
that is much more powerful.

The E input neurons in our mixture NN each correspond to the fractional amounts of E
elements present in a mixture of elements within one region of an input scene. The outputs from
two matrix-vector multiplications are combined to form the new neuron states. After a number
of iterations, the final neuron states denote the fractional amount of each element present in the
input mixture.

The matrix inversion NN produces the inverse of a matrix that is given to the processor.
To calculate the inverse X of a matrix q, we realize that QX = . We formulate the solution
(the elements of the inverse of Q) as the minimization of an energy function . We solve for the X
that minimizes the energy function on a neural net. The matrix elements (weights) in this NN
have an attractive block Toeplitz form and thus acousto-optic (AO) architectures should be very
suitable for implementing this NN. This represents the first AO NN. Since matrix inversions
are required in many pattern recognition linear discriminant function designs and in most
adaptive algorithms, this NN should have general computational use in image processing (as well
as in adaptive radar, control, etc.).

The cubic energy NN for MTT takes measurements on objects in each of three frames and
it assigns one target per measurement and time frame. This is useful for time sequential scene
analysis to associate objects (or object parts) in several time frames.

The quadratic energy MTT NN is a simplified version of the cubic energy NN. It processes
pairs of time frames. The resultant optical architecture is much simpler than the cubic energy
NN and significantly reduces component requirements.

The symbolic NN combines a symbolic correlator, production system NN, feature extractor
and image processing NN. Its major advantage is the ability to process multiple objects in the
field of view (this is achieved by the symbolic correlator). No other NN has this ability. It
outputs a symbolic description of each region of the input that denotes which generic shapes are
present and their location. These data are then symbolically encoded and fed to an NN. The
NN is unique because of its symbolic input neuron representation. Alternatively, the locations of
regions of interest in the input scene are used to guide the positioning of window functions (for
segmentation) from which input features are extracted and subsequently fed to an NN for object
classification. These NNs again combine pattern recognition and NN techniques.
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The adaptive clustering NNis our major effort. The input neurons are features, the hidden
layer neurons are prototypes of the various classes of objects and the output neurons denote the
class of the input object. Clustering techniques are used to select the original hidden layer
neurons (we allow several neurons or clusters per object class) and hence the initial input to
hidden layer weights. These represent a set of linear discriminant functions (LDFs). The output
neurons define the class of the input. The hidden to output layer weights map the clusters to
classes. Our study of criterion functions determined the type of error function used to train the
NN. Thus, advanced pattern recognition techniques are used to initialize the set of NN weights.
A new adaptive NN learning algorithm is then used to refine and improve the initial weight
estimates and to produce the LDF combinations that provide the nonlinear piecewise
discriminant surfaces finally used. This is the adaptive learning stage. This new NN combines
pattern recognition and NN techniques.
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CHAPTER 2

"A Multi-Functional Hybrid Optical/Digital
Neural Net"



PROC. SPIE, Volume 1294
April 1990, Orlando, Florida

A MULTI-FUNCTIONAL HYBRID OPTICAL/DIGITAL NEURAL NET

David Casasent

Carnegie Mellon University
Center for Excellence in Optical Data Processing

Department of Electrical and Computer Engineering
Pittsburgh, PA 15213

ABSTRACT

A multi-functional hybrid neural net is described. It is hybrid since it uses a digital hardware
Hecht-Nielsen Corporation (HNC) neural net for adaptive learning and an optical neural net for on-line
processing/classification. It is also hybrid in its combination of pattern recognition and neural net

techniques. The system is multi-functional. It can function as an optimization and adaptive pattern

recognition neural net, as well as an auto and heteroassociative processor.

1. INTRODUCTION

Neural nets (NNs) have recently received enormous attention [1-2] with increasing attention to
the use of optical processors and a variety of new learning algorithms. Section 2 describes our
hybrid NN with attention to its fabrication and the role for optical and digital processors. Section 3
details its use as an associative processor. Section 4 highlights is use in 3 optimization NN problems
(a mixture NN, a multitarget tracker (MTT) NN, and a matrix inversion NN). Section 5 briefly notes it
use as a production NN system and symbolic NN. Section 6 describes its use as an adaptive pattern
recognition (PR) NN (that marries PR and NN techniques).

2. HYBRID ARCHITECTURE

Figure 1 shows our basic hybrid NN [3]. The optical portion of the system is a matrix-vector
(M-V) processor whose vector output P3 is the product of the vector at P 1 and the matrix at P2. An
HNC digital hardware NN is used during learning to determine the interconnection weights for P2 If P2
is a spatial light modulator (SLM), its contents can be updated (using gated learning) from the digital
NN. The operations In most adaptive PR NN learning algorithms are sufficiently complex that they are
best implemented digitally. In addition, the learning operations required are often not well suited for
optical realization; for optimization NNs, the weights are fixed; and in adaptive learning, learning is
off-line and once completed the weights can often be fixed.

Four gates are shown that determine the final output or the new P1 input neurons (Depending on

the application). We briefly discuss these cases now and detail how each arises in subsequent
sections. In most optimization NNs, an external vector a is added to the P3 output (Gate 1 achieves
this). In all NNs, a nonlinear thresholding (P3 outputs are 0 or 1), truncation (all P3 outputs lie between
0 and 1), or maximum selection (the maximum P3 output is set to 1 and all other P3 outputs to 0)
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operation is required (Gate 2 achieves this). In a 3-layer NN (adaptive PR), a second M-V operation is
performed with the P3 neurons as inputs (Gate 3 achieves this). When the neuron outputs are fed
back to the Pi input neurons (in an iterative NN), linear or binary P1 neurons may be used (Gate 4
produces the proper P, input neurons).

Figure 2 shows the optical portion of the NN as fabricated. A stripe electroded liquid crystal
device (LCD) serves as P1 and a computer-generated hologram (CGH) as the P2 set of
interconnection weights [4] (this allows real-time realization on an SLM with minimum space
bandwidth product and/or improved light efficiency to avoid the large insertion loss of a standard M-V
processor). An IBM PC/AT, DT 2821 data acquisition board, and various special-purpose hardware
provide all digital/electronic support functions.

3. ASSOCIATIVE PROCESSOR (AP) USES

The first type of NN we consider is an AP. We consider pseudoinverse [6] and other advanced
APs (such as the Ho-Kashyap AP) [5], since they have more storage capacity and better noise
performance than Hopfield and other APs. They also require only one pass through the P1-P 3 system
(rather than many iterations, as in other APs). Thus, these systems use only the P1 -P 3 M-V processor
(the P1 input is the key vector, the matrix at P2 is fixed and the P3 output is the recollection vector -
most closely associated with the input key vector). We emphasize heteroassociative processors
(HAPs), since they make decisions (i.e. the recollection vector encoding denotes the class of the
input key vector data). We also employ P1 input neuron spaces that are features, facts, or symbolic
descriptions of an object (this significantly reduces the dimensionality required - the number of
neurons). With only 32 input neurons, we have recognized over 1000 distorted input objects in 10
classes. For these neural nets, the P1 neurons are linear, the P2 weights are analog, and the P3
neurons are binary (or use maximum selection). We note that P2 can also be the data matrix, in which
case a nearest neighbor AP NN results.

NEURON REPRESENTATION SPACE

A key issue in all of our NN AP systems has been the use of a variety of neuron representation
spaces. These include: iconic (one neuron per pixel in an image), feature spaces, symbolic (facts
etc.) data, and encoded correlator output data. Iconic neuron spaces require a very large number of
neurons and are thus not attractive. They also result in neuron spaces that are not distortion or shift
invariant (i.e. they require many training images, one for each possible shift or distortion). Feature
space representations result in fewer neurons (a considerable reduction in dimensionality) with
various levels of distortion and/or shift invariance and are thus very attractive and preferable.
Symbolic and correlator representations allow multiple objects to be handled (all other neural
systems require preprocessing to isolate one object in the field of view, before inputing the data to a
NN for processing).

4. OPTIMIZATION NEURAL NETS

A major class of NNs are optimization NNs (rather than PR NNs). In most such cases, these NNs
are characterized by iterative M-V processors with a fixed P2 set of interconnection weights, the
addition of an external vector a to the P3 output, and a nonlinear function (before the output is fed
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back to P). The fixed P2 weights allow us to efficiently use the optical portion of Figure 1 with P2
being a film-based (CGH etc.) mask. We briefly note 3 optimization NNs and discuss their realization
on Figure 1.

4.1 MIXTURE NN

In this case, the input signal c is the sum of a number of reference functions ke (e = 1 ... E
references exist, plus unknowns)

c eke. (1)
e

We desire to find the fractional amounts xe of those references ke present. This problem arises in the
analysis of imaging spectrometry data [7] and in other cases. We minimize the MSE function E, =

(c n--x ek ne) 2 and the constraint E2 = (xe-1 )2 that the sum of the xe is unity. We also insure that
n e e
all xe satisfy 0< xe< 1. The solution x using the neural evolution equation

a x/a t oC - a E(x)/a x (2)

can be written as the matrix-vector equation (for discrete time t) as

x(t+1) = 1[T (t) + a], (3)

where 0 satisfies 0<x e< 1, the matrix T = KTK+l is fixed (K is the data matrix of the references, K =
[k1 ... kE] and KTK is the VIP (vector inner product) matrix of reference data), and the vector a a KTc
is known (it varies with the input, but is fixed during the iterations in Eq.(3)). To implement (3) on
Figure 1, we input x to P1, and the fixed film mask P2 is T. We add a to P3 (through Gate 1) and apply
through Gate 2 to produce the new P1 neuron values (linear input neurons are formed using Gate 4).

For this NN application, we have modeled the various error sources in the optical processor (with
a random variable with a given standard deviation denoting various analog optical system accuracies
and noise sources). We find [3] that the error in the P2 weights is the most dominant error source
(together with the uniformity of the P1 illumination). With proper P2 mask encoding and correction for
P 1 illumination, sufficient accuracy exists. We have tested the algorithm with various mixtures of
minerals (where k ne is the reflectance spectra of mineral e at various wavelengths n and c is the sum
of several such reference signals). Table 1 shows the results obtained for only one element present
(pure with both small and large grain size) and with mixtures of 10 different elements with different
amounts of noise present in the composite input signal c. The average number of iterations and the
worst-case error in any x e are noted.

4.2 MATRIX-INVERSION NN

This NN produces the inverse of a matrix directly [8]. This operation is vital for various real time
phased array radar, signal processing, PR, and NN applications. Consider calculating the inverse of
the matrix 0 with elements 0 ab" The values of the neurons Xab will denote the elements of Q-1. We
solve this by minimizing the MSE function
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C, = '- [--QabXbc-bab] 2. (4)
a c b

When c1 0, Q X = I and X = Q-1 . Substituting into the neuron state time evolution equation

a Xab/a t = -via E/a Xab = -,[Z-" 0ca cdXdb-Qba' (5)
c d

and discretizing time 6t with X = -nbt where n is the time index, we obtain

Xab(n+1) = Xab(n) +X[_ZQcacdXdb - Sab]. (6)
c d

We write this as a matrix-vector equation

x(n+l) = x(n) +.X[Tx(n) - s] (7)

where x is a vector of N2 elements or neurons (the NxN elements of Q-1), T is an N2 xN 2

interconnection matrix, and s is the 1 -0 list of the elements Qab"

From (7), we see that this NN formulation is similar to (3) for the mixture NN. It can thus be
implemented on Figure 1 as before. The x(n) term on the right hand side of (7) can be included in the
M-V product T x by the addition of ones to the diagonal of T. Thus the new x(n+1 ) values are given by
a M-V product with the prior x(n) vector with a vector s subtracted from the result. The vector s
subtraction is performed through Gate 1 with linear neuron values for the next n+1 time step produced
using Gate 4. The only notable exception is that the matrix T weights now vary as a function of the
matrix W being inverted (by comparison, the matrix in the mixture NN is fixed for a given database).
The block Toeplitz structure of T allows for a very novel and efficient acousto-optic NN realization
[8]. However, here we emphasize the realization of a variety of NNs on the same architecture (Figure
1 ) with a 2-D SLM (or film) at P2.

Table 2 summarizes results obtained with various matrices. As seen, the number of iterations
required is modest and the MSE accuracy of the resultant Q-1 inverse is generally within the 1%
accuracy expected from an analog processor. This algorithm thus appears very attractive since
round-off errors do not accumulate and a meaningful result (with 1 % accuracy) is obtained with a 1 %
accurate analog optical processor.

4.3 MULTITARGET TRACKER (Mnl-r) NEURAL NET

We devised, described, and simulated an MTT NN using only position sensor data. This system
[9] resulted in a new NN that minimized a cubic energy function. The optical architecture required
multiplication of a matrix (the vector outer product (VOP) of the present neuron state) times a tensor.
Our algorithm and architecture reduced the required 2-D space bandwidth product for the tensor by a
factor of over 1000. Although this cubic energy function NN algorithm is very attractive, it requires a
new tensor for each new set of measurements. Instead of using measurement data over 3 time
frames, we devised a new quadratic energy MT NN using range and velocity sensor data. This is
preferable, results in a simpler NN system using a fixed 2-D mask (rather than a real time high
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bandwidth 2-D or 3-D SLM). Both of these NNs are measurement based, require fewer input neurons
than other MTT NNs, do not require track initiation, nor a Kalman filter or extended Kalman filter post
processor. We now describe our quadratic MTT NN algorithm, its realization on Figure 1, and initial
data results.

We assume N m measurements in two sequential time frames i and j. The objective of the
processor is to assign each measurement at time i to a measurement at time j. We use Nm 2 neurons

Xi. We use the differences Di between all measurement pairs. The energy or error function to be
minimized with respect to the neuron state X is

E(X) = C1Z>XijDii + C2E(Ex - 1)2 + C3(Ex.- 1 )2. (8)
i J i J I I

Term 1 is a minimum when measurements i and j in two time frames are the most similar (term 1
reduces the strengths of neurons associated with large Dij). Terms 2 and 3 insure that for each

measurement i (j) in frame 1 (2) there is only one measurement j (i) in frame 2 (1) associated with it.
The weights Cl-C 3 are chosen to emphasize the term desired (dependent upon sensor properties,
scenarios, etc.). We use the Hopfield neural evolution equation

X k(n+l) = XkI(n) - r7:Xkl (9)

where n is the discrete time index, ? is the step size, and from (8)

,dXki = a E(X)/a XkI 2 DkI + 2(.XXkj - 1) + 2(F-Xi - 1). (10)

We write (10) as the matrix-vector equation

,X i = ". .X. + Di (11)

and thus we can implement this algorithm on the system of Figure 1.

The vector Xi is the Nm 2 dimensional lexicographically ordered vectorized version of the Xi.

neurons at P1 , Di is the Nm 2 difference vector added to the P3 outputs, and M is a fixed (film-based)
matrix at P2 in Figure 1. As before, we add D to the P3 output through Gate 1 (in Figure 1), we use
Gate 2 to apply a nonlinearity to the output to insure 0<X.< 1. The final P, neurons are now binary
(Gate 4).

Figure 3 shows the typical Xii neuron outputs (in 2-D, for ease of understanding) at different time
steps in their evolution. The amount of area shaded in the 2-D outputs denote the neuron analog
output. As seen, the final output has one "on" (value -1) neuron per row and column (i.e. one
measurement pair assigned in each time frame). Excellent Pc = 100% performance has been obtained
in noise for various scenarios with this algorithm I10].
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5. SYMBOLIC AND PRODUCTION SYSTEM NNs

5.1 PRODUCTION SYSTEM NN

When a predicate calculus set of rules as "if-then" statements describes a production system,
one can employ a NN to determine new true facts (activated output P3 neurons) given true input facts
(activated Pi neurons) and rules (as P 1 P3 interconnection weights). Figure 4 shows the NN for the
simple set of 4 rules: A-1B, a AND C AND F-G, B-C, F AND G.C. Each fact (A to G) is assigned to
one input and output neuron. To implement this on Figure 1, true facts are denoted by activated P1
neurons and new inferred facts are given by P3 neurons that exceed threshold. The rules (weights)
are a fixed P2 matrix. The P3 output is thresholded to produce binary neurons (Gates 2 and 4) for the
next P1 input. This produces new inferences and new rules not explicitly encoded.

5.2 SYMBOLIC CORRELATOR NN

We have interfaced a production system to a multichannel optical correlator to achieve a
symbolic correlator [11]. This is a most unique NN, since it is the only NN that allows multiple
objects to be handled in parallel with both shift and distortion invariance for scene analysis. Figure 5
shows the basic concept of this processor. The multi-channel optical correlator provides a multiple
output (D-digit symbolic word) for each object present in the field of view (FOV). An optical
correlator thus allows multiple objects to be handled and true shift invariance. The multichannel
correlator used and its symbolic output allows many classes of objects to be identified (with D=4
channels or filters and L=1 0 output levels, over 10,000 object classes can be accommodated on one
processor). The recent simulated [12] and real time [11] optical laboratory data we have obtained
used filters to recognize the presence of various object parts, the encoding of these symbols was
then fed to a production system NN. Excellent distortion-invariant and multiple object results were
obtained [11 ].

6. ADAPTIVE LEARNING PATTERN RECOGNIION (PR) NN

Various multi-layer NNs can be produced. With three neuron layers, any piecewise nonlinear
discriminant surface can be produced. Figure 6 shows a 3 layer NN with neuron layers P1 (input), P3
(hidden layer) and P5 (output). The P2 matrix in Figure 1 provides the P to P3 weights needed. We
implement the P3 to P5 (second to third layer) neurons in Figure 6 in hardware through Gate 3 in
Figure 1 (this is realistic with the new NN we consider).

One advantage of a NN over standard PR classifiers is its organized ability to produce nonlinear
decision surfaces. We feel that a PR NN should utilize standard PR techniques where appropriate and
NN techniques where they are preferable. A marriage of PR and NN techniques is preferable. Our NN
(Figure 6) uses PR techniques (linear discriminant functions (LDFs) and clustering) to select the
number of P3 neurons and the initial P1 to P3 weights. NN techniques are then used to refine these
initial weights. A hybrid PR-NN thus results. We consider a multiclass PR classification problem with
one P5 neuron per class (the activated P5 neuron denotes the class of the input fed to P1). The P1
neuron representation space (Section 3) we use is a feature space with inherent shift and distortion
invariance and with a low dimensionality. This provides shift and distortion-invariant multiclass PR.
We select 2-5 neurons at P3 per class using clustering techniques. These are example/prototype/or
cluster neurons and hence we refer to this as an adaptive clustering neural net (ACNN). The initial P1
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to P3 weights are selected using LDF methods. They are then refined using NN methods to produce
nonlinear piecewise decision surfaces.

Most NN learning algorithms are such that they are not easily realized with optical processing. We
envision the use of gating learning with learning being off-line (on the HNC digital hardware section of
Figure 1) with the weights being fixed after learning. We consider classification of input data to be an
on-line problem requiring real-time optical processing (on the P1 -P 3 optical system of Figure 1).
Thus, we employ a hybrid optical-digital NN.

Our present purpose is to show how many different NNs can be realized on the architecture of
Figure 1. Thus, we only briefly highlight our ACNN [13] realization on Figure 1 (or in general, a
multi-layer NN). We consider only supervised learning. The input P1 neurons are analog features, the
P 1 to P3 weights are chosen as LDFs and are subsequently modified (in training on the digital NN) to
produce piecewise nonlinear discriminant surfaces. Our cluster selection method determines the
number of P3 neurons used and removes this variable from the NN. The P, to P3 weights are analog
and encoded on a fixed mask at P2 of Figure 1 (after training). The P2 mask can be adapted as gated
learning proceeds. The most active P3 neuron is selected (Gate 2 in Figure 1) and binary P3 neurons
result (with one P3 neuron being the most active). The P3 to P5 weights are binary and perform a
mapping of the P3 cluster selected to the final class designation (the P5 neuron activated). Only one
pass through the system is required in classification. The P1-P3 neuron processing is optical. The P3
nonlinearity (Gate 2 in Figure 1) requires a maximum selection operation. The P3-P5 processing is
performed digitally (Gate 3 in Figure 1), since it is only a simple mapping and the number of P5
neurons is small. Figure 7 shows one result from this ACNN for a 3 class problem with 2 features.
The samples in each class are indicated by different symbols. The nonlinear decision surfaces
produced by the ACNN are indicated. Such surfaces are necessary to separate these data samples.
Over 98% correct recognition was achieved. ,

7. SUMMARY AND CONCLUSION

A general optical/digital NN architecture and its hardware were described. The multi-functional
nature of the system was emphasized - with the same processor shown to be capable of solving a
variety of NN problems. We have highlighted many of these uses. The system functions as an
associative processor (AP). We specifically use it as a heteroassociative processor (HAP) for
distortion invariant pattern recognition. We also employ it as a closure AP (operating on facts). The
system is suitable for many optimization NNs. We have highlighted its use as a mixture processor, a
multitarget tracker and a matrix inversion system. In the first 2 cases, an external vector is added to
the M-V neuron output. Both analog and binary neurons are used (depending upon the application).
Analog weights are used. The use of the system as a production system and a symbolic correlator
NN were noted (this NN handles multiple objects in the field of view). Finally, its use in adaptive
learning (distortion invariant PR classification) was discussed - where it functions as a general multi-
layer NN capable of any piecewise nonlinear discriminant surfaces.
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Noise Average Worst case
percentage number of error in any

Input spectra n (%) iterations X, (%)

Pure, large 0 738 3.39
Pure, small 0 1094 11.33
Pure, large 0 940 5.42

and small
Pure, large 2.5 1155 5.16
Pure, large 5 1153 4.91
Mixture, large 2236 0.98
Mixture, large 2.5 3603 1.46
Mixt lre. larze ,r) 35 7 t .6

Table 1. Simulation results for the determination of the
composition of an input element or mixture.

No. of Iterations Accuracy of Result
55 1.28%
88 0.13%

111 0.01%

Table 2. Optical neural net matrix inversion solution data.
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ABSTRACT

A hybrid optical/digital neural net is described. Initial tests on the optical components are

provided with the first simulated neural net results addressing various optical system error sources
included. Attention is given to the accuracy required for each optical component, the dominant error
source and the cumulative effect of multiple optical system error sources.

1. INTRODUCTION

Various neural net (NN) architectures and algorithms have been advanced. Several of these have
been realized and tested In limited dimenslonality and extent In the lab. In Section 2, we advance a
new and most general purpose NN. It is a hybrid optical/digital NN (using a digital NN for
training/learning and an optical N for on-line processing). Its wide usage In a multitude of
applications will be detailed elsewhere [1]. Here we advance its basic concept and architecture
(Section 2), we consider a specific optimization NN application (mixture analysis) in Section 3, and
we provide the first simulation of optical NN error effects (Section 4). Prior NN simulations [2] have
not been successful, due to an Insufficient NN model and/or the choice of an NN architecture not
easily lending Itself to modeling.

2. HYBRID OPTICAL/DIGITAL NN ARCHITECTURE

Figure I shows the basic architecture we consider. It consists of a general-purpose hardware
digital NN (the Hecht Nielson Corporation (HNC) Anza system) Interfaced to an optical NN. The
optical NN consists of an optical matrix-vector (M-V) multiplier. The vector data is fed to point
modulators at P1. The P1 light Is broadcast to uniformly Illuminate different rows at P2 (which contains
the matrix data). The light leaving P2 Is Integrated vertically onto a linear detector array at P3. The P3

output is thus the M-V product of the P2 matrix data and the P1 vector data. The optical M-V
architecture Is the basic element of the system. Its outputs (P3) are processed In various maniners
(depending upon the application) before being fed back to the P, Inputs. We also allow the P3 output
to be used to alter the P2 matrix data (with an adaptive P2 SLM used). The P3 to P1 digital feedback
shown considers various NNs and the resultant processor Is very general purpose [I).
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FIGURE 1. General hybrid optical/digital neural net.

3. CASE STUDY

The specific case study we consider is input 1 -0 data which is a mixture of several reference 1 -D
patterns. Specifically, for the case of input Imaging spectrometer data, we consider the Input to be
the sum of the several reference spectra (for different minerals) present in a given input region. The
objective is to determine which e of E spectra are present and the amount x. of each that is present.
A specific case study (such as this) is expected to quantify the spatial M-V system errors allowed
and the individual component requirements.

The signal c = (cn} received at each spatial region of the scene has N spectral components at the

Xn of the imaging spectrometer. This received signal is a mixture of the reflectance data ke =

[K16 ... KN ] for mineral element e for all Xn,

c x k. (1)
0W-

The objective is to determine the elements e present (e z 1 ... E) and the fractional amount x of

each. The ke reflectances for E minerals are available and the data matrix K a [k. ... kE] describes
the reference data. We have spectra in N a 128 reduced bands for E - 600 elements. To solve (1) for
x, we consider a neural net (NN) solution. We write the MSE as one error term to be minimized

El(x) a 1/2E(Cn -L-XKn0)
2  (2)

n 0
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where the Kne are the reflectance data at wavelength )n for element e. We also impose the condition
that the sum of the x. equal one

E2 (x) = 1/2(Dxe-1) 2  
(3)

e

The solution x that minimizes the error or energy E s E1+E2 is desired.

To describe this as an NN optimization problem, we denote the solution x by a neuron array and
allow the neurons to evolve as

8 x/a t cc - a E(x)/a x. (4)

With (4), E decreases monotonically with time and no local minima occur. Substituting E into (4), and
using discrete time, we obtain

x(t+ 1) r..x(t) + a], (5)

where T = -KTK + 1, a= rKTc and 0 is a nonlinear function that satisfies the additional constraint

0 < x6(t) < 1 (6)

and o7• 2/TrKTK] as In the Widrow Huff LIMS algorithm.

We will compare the evolution solution In (5) to the pseudoinverse solution

(KTK)'KTc x K c (7)

which does not satisfy (6) to show that a NN solution Is needed. The neural net solution in (5) can be
achieved on the optical system of Figure 1 as we now discuss. The matrix T is placed at P2 (it is fixed
and film can be used for it - in this application - and in most optimization NNs). The P1 outputs are x
and at P3 we obtain T x. Since K is fixed, we form a in digital hardware. Thus, in Figure 1, the M-V
multiplication is performed optically and the external vector is calculated digitally and added to the
optical M-V result. This output is then thresholded and fed back to PV. The feedback in Figure 1
achieves this.

3. OPTIAL NN FABRICATION

For the present optimization NN, the matrices are fixed. This is the case for nearly all optimization
NNs. Thus, we consider the use of film for the matrix P2 data. We detail elsewhere [3] how to
optimally encode this matrix data on film. Figure 2 shows the optical M-V processor In more detail
and Figure 3 shows its electronic support. In Figure 3, the P1 neurons are formed from a 2-D liquid
crystal (LC) display [4] modified with all elements in a row fed with the same signal. The display has
20 rows of 40 elements (4.2 x8.4 cm2), each LC pixel is 2.1 X2.1 mm2. We employ it as a set of 20
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stripe modulators. The device has TN LC material sandwiched between two glass plates, whose
surfaces adjacent to the LC material are coated with etched transparent conductors to form
electrically isolated elements. At present, we use a set of 4x4 LC pixels (8.2x 8.2 mm2) In the center
of the display. This stripe P1 design is attractive since it avoids the need for external collimating and
imaging optics between P1 and P2. It allows P2 to be placed in contact with P1, thus simplifying
design. P2 data is recorded as a binary computer generated hologram (CGH) pattern using a new
encoding technique that provides high accuracy [3).

A HeNe laser (X = 633 nm) serves as the present light source illuminating the LC at P1. The Initial

optics illuminating P1 have been designed. We insure uniform illumination of P1. The beam radius R

required to produce a uniformity X = 0.995 (0.5%) over a diameter D Z \/2"(8.4) = 11.88 mm is R

D/2(1 -X)" 2 = 84 mm. This will pass only 0.5% of the light. This is sufficient with a 30 mW laser, but
can be improved by use of laser diode sources and CGHs. The initial P2 to P3 optics have been
designed using two cylindrical lenses (L2 with fL2 = 25 cm and L3 with fL3 = 16 cm).

At P3, we use TRW OP509SLC phototransistors with a plastic lens case. The detectors have a
1.3 mm diameter active area and are on 2.54 mm centers. The light from each 2.1 mm wide LC and P2
column is magnified by 2.54/2.1 a 1.21 to image onto the detectors. With 1.3 mm detectors, the width
of a P2 element can be no larger than 1.3/1.21 = 1.07 mm. We use 0.9 mm wide P2 elements to allow
an 0.17 mm guard band horizontally. We use 1.8 mm of the 2.1 mm height of each element (an 0.3 mm
guardband).

Thus, each P2 element has an active area of 1.8x0.9 mm 2 (in the 2.1x2.1 mm 2 area). The
Unotronics recorder we use to produce the P2 mask has 20 pm diameter spots on 10 pm centers.
Thus, in the 1.8x0.9 a 1.62 mm 2 area of one element, we can record 4050 dots or weights with 4050
gray levels using dot corrected CGH techniques [3].

We have fabricated the major portion of the support electronics (Figure 3). The vector driver (one
op amp and CMOS SPDT switch per P1 Input element) provides the ac zero-mean square wave
required by the LC. The input is a dc voltage and the output is a zero-mean squarewave with a
peak-to-peak amplitude that is twice the unipolar input. The circuit can operate at 1 KHz (this is much
faster than the 20 Hz frame rate of the present LC). We have also fabricated the detector amps
(transimpedance op amps LF412). The gain of each is individually adjusted to correct for variations in
channels and detector efficiencies. The max output Is 5.0 volts at the maximum expected light level (a
220 ks2 feedback resistor is used).

The data acquisition and generation system is now described. In this section, the outputs from
the P3 detector amps are A/D converted, fed to an IBM PC/AT whose outputs are D/A converted, fed
to a demultiplexor S/H (sample and hold) circuit before being fed In parallel to the P1 vector drivers.
All analog signals are 0-5 V. All circuits use +5 and +7.5 V power supplies. This system consists of
an IBM PC/AT, a PC-Bus data acquisition board, and special demux S/H circuitry. The PC/AT runs at
6 MHz, has 612 kB of memory and a 30 MB hard disk. Control software is written in Turbo C and
80286 assembly code. It computes the input drive to P1 and outputs these signals. It also digitizes
the output P3 neuron data. The data acquisition board is a Data Translation DT2821. It contains one
12-bit 50 kHz A/D and two Independent 12-bit 130 kHz D/As. A 16-channel multiplexor inputs the
parallel P3 detector data to the A/D. The board also contains 16-bits of TTL level signals for later I/O
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control use. Presently, we digitize 4 detector outputs in 80 ps (50 kHz). The calculated P1 inputs for
the next cycle are sequentially D/A converted, fed to a demultiplexor S/H (an LF398 S/H circuit) to
allow them to be fed in parallel to the P1 drivers. Four parallel S/H circuits are presently used. The
D/A can cycle through a 32-element vector in 2.5 ms (7.7 js per input or 30.8 is for our present 4
Inputs).

The noise level of the P3 detectors were measured to be 10 mV out of 5 V for a Orn = 2x 10-3. We
measured other parameters of our system for use in simulations of error source effects. The contrast
ratio of the LC at P1 was measured to be 5690:1. This is much larger than the value typically reported,
due to the type of drive signal we use in our use of the device. We drive each modulator element with
a continuous signal. Conventionally, one applies a pulse voltage to one element and then returns
(time-multiplexed) to it later. The speed of the LC device was measured by applying a 2 Hz square
wave signal with various amplitudes. The results (Figure 4) show that a 50 ms switching time
(average of rise and fall times) results for drive voltages above 7 V RMS. Increasing the drive voltage
decreases LC rise time and increases fall time. All times are measured from the 10-90% points. We
linearize the LC transfer function by the 512 point table look-up. The results (Figure 5) show a 512
point linearity is obtained.

4. OPTICAL NN SIMULATION

We now provide the first models for the accuracy required in the various elements of any optical
NN. We consider our NN for our mixture NN application. We also compare the pseudoinverse
solution and show that a NN solution is required. We consider 4 mixture case studies with different
numbers of elements considered and with different numbers of non-zero elements. Case 1 (4
elements, 2 non-zero), Case 2 (4 elements, all non-zero), Case 3 (8 elements, 4 non-zero), and Case
4 (8 elements, all non-zero). Various amounts of elements were added, with the amount of each
varied. The elements used were taken from the 20 most common minerals. Noise (zero-mean,
Gaussian) was added to the data. The average of 10 runs (Cases 3 and 4) or 20 runs (Cases I and 2)
were used for each xe set (with different noise realizations). Each data point also represents the
average of 10 x. choices. Thus, each data point is the average of 100 or 200 different runs.

4.1 Pseudoinverse versus Neural Net Solutions

When x has most values near 0 or 1 (Cases 1 and 4) as occurs in all practical cases, we expect
the NN solution to be better. Figures 6 and 7 show the data obtained for the 4 cases with different
amounts of input noise (SNR). We see that the average neuron error is much less for all NN cases
(dashed lines) than for the pseudoinverse (solid line) cases and that the difference is more at lower
input SNR and for cases with more zero-valued elements (Cases 1 and 3). The number of iterations
required also differs. With SNR x 20 dB, Case 3 required 50,000 iterations versus 1000 for Case 1
(due to the larger condition number). Mixtures with zero-valued x. require more (1000 versus 130)
Iterations to converge. We started the NN Iterations from the x calculated from the pseudoinverse
solution (this is a useful new technique). Without this starting x value and using an arbitrary initial x,
we needed 8000 versus 1000 iterations.

We now discuss the significance of an average neuron error of 0.02 (our acceptable level). For
Case 1, with 2 non-zero x., the average x. x 0.50 and an average error of 0.02 is an 0.02/0.50 Z 4%



-7-

100
90.................. .. 4(KX)tO0 " .

...............

so 3W -
70 ~30W-

60-~ 2500-

50-~ 2000-

40- 500-

30- 1000

20-
5010

10-

00
0 1 6 7 8 0 500 IWO 1500 2000 2500) 3000 35(X OW(X 4.5004 5 6 7 9 1

RMS Vokar SICp DieaWI D/A Com Owput Value

Figure 4. Rise (solid), fall (dashed), and Figure 5. Transmission vs. digital output

switching time (dotted) vs. voltage, with look-up table.

0.25 Four Minerals, Two Non-zero Four Minerals. All Non-zero
r0.2 7 0.25

S0.2-
0.2

0.15 - 0.15

Z 0.1 Z 0.1

< 0.05 - <0.05 .

0 L ---- -=-,0
0 20 40 60 80 0 20 40 60 80

Spectrum SNR, dB Spectrum SNR, dB

Figure 6. Accuracy vs. noise for pseudoinverse (solid line) and neural net (dotted line).

0.6 Eight Minerals Four Non-zero 0.6 Eight Minerals, All Non-zero
o 0

Z 0.4 0.4-

(1
Z" 0.2- z 0.2

L>
< 0 -'--- - - ---- -0< 0

0 20 40 60 80 0 20 40 60 80

Spectrum SNR, dB Spectrum SNR, dB

Figure 7. Accuracy vs. noise for pseudoinverse (solid line) and neural net (dotted line).



error. For Case 3, the average xe = 0.25 and 0.02 is an average error of 0.02/0.25 = 8%. In practice,
we expect few non-zero elements and thus Cases 1 and 3 are the most representative ones. They
have a lower (better) average error (Figures 6 and 7). The choice of 0.02 is also a good goal since
imaging spectrometer calibration accuracy is 5-7%.

4.2 Simulation Model

We model the NN in Eq. (5) with errors as

(t+ ) )[x(t) + t7[2 + !!o + -20 + nx(t) + N(N + KTK)x(t)]. (8)

We now discuss the errors included in (8). The detector P3 noise is additive, zero-mean, Gaussian
and has a standard deviation nx(t) that is time-varying and uncorrelated (a new noise realization is
used for each iteration). The additive P3 offset in the detectors (dark current) and detector
differential amps plus A/D quantization noise are modeled by !.. The P3 neuron gain variations are
modeled by N. They are multiplicative and signal dependent. We assume negligible P1 errors
(Figure 5 confirms this, since P3 feeds P1). To include Ng errors at P1, we would multiply the entire
right hand side of (8) by another N. factor. The P3 neuron errors N equivalently also include the
effect of N errors in P1 neurons, thus we do not add the extra N factor. We represent neuron gain
errors by a diagonal matrix N with diagonal elements 1 +n (where n are the gain variations). This
handles a multiplicative error (1 + error) times a vector. irrors In the connection matrix at P2 are
represented by the additive matrix N, of random uniformly distributed values added to T. This also
Includes errors in the uniformity of the light incident on PI. P3 offsets can be reduced by adjusting
the P3 output amplifiers. Detector and P1 gain variations can also be adjusted by varying individual
amp and drive circuits. P1 offset and nonuniform Input light effects can be corrected within the P2
mask. Thus, all errors we consider are residual. Our goal is to determine the dominant errors, the
level to which each must be reduced, how multiple errors combine and the performance expected for
a given set of components with given specifications.

In all cases, we used a fixed convergence threshold of 10-4 (i.e. the largest element in a-T x must
be < 10-4 ) to stop iterations. When the noise added is above 10-4 , we average the last 20 correction

vectors and stop iterating when the average is less than or equal to 3.25n/v/i0. This level

increases with the standard deviation n of the noise source.

4.3 Error Source Results

Figures 8-11 show the effects of the four error sources separately. From Figure 9, we see that
the effect of the additive detector noise is negligible, i.e. the average error is less than the standard
deviation of the noise. The expected detector noise measured was ax a 2 x 10- 3 and as seen, the

average neuron error at this ax Is much less than 10-3 and hence is negligible. Figure 9 shows the
effect of offset error n. To achieve an average error of 0.02, we require an offset variation of
±0.0025 (for the 4 neuron cases) and +0.0013 (for the 8 neuron Case 3). With the 12-bit D/A and
A/D, we expect a quantization error of + 1.2 x 10 4 . The detector op amps have 2 mV offset out of 5 V
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or +4x10- 4 . The expected total no is thus (2.4+8)x10 - 4  10 - 3 . At these !2o levels (10-3), the

average error is negligible (1.4x 10 -4 for case 4).

The effect of N errors is more significant (Figure 10). To keep the error below 0.02, we require

the gain to be uniform within 1.25 X 10 - 3 (Case 2) or 5.5 x 10 - 4 (Case 3). For our lab system, the

detector gains can be matched to 10 - 3 and the detector amps are matched to 10"4 . The additive Nm

matrix errors are the most dominant errors (Figure 11). This is expected since it alters the problem

and the energy surface and the required matrix accuracy increases with the condition number of the

matrix T. We require an accuracy of +1.8X 10 - 4 (N M = 3.6x 10-4 ) for Case I and +10 -4 (Nm = 2x 10- 4 )

for Case 3. We can record matrix elements with an accuracy Nm = 1/4050 2.5X 10-4 and thus

expect acceptable results. A beam uniformity of 0.005 incident on P1 will yield unacceptable 0.1

average errors. To achieve this amount of uniformity, we must correct with the P2 mask to achieve

acceptable results in all cases.

We combined all noise sources and found that they add in an RMS fashion and that the mask

accuracy and P1 beam uniformity are the critical parameters.
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CHAPTER 4

"An Optical Neural Net for Classifying
Image-Spectrometer Data"



Optical neural net for classifying imaging spectrometer
data

Etienne Barnard and David P. Casasent

A problem in surface mineralogy is addressed; namely, how does one determine the composition of a mixture
from its spectrum? A neural net algorithm arises naturally, and we detail the state equations of this net. An

optical architecture and simulation results are presented.

I. Introduction II. Mathematical Description

We consider the following problem: Given the spec- Let Ke(X) denote the spectrum of mineral e, where X
tra of a number of elements, determine the composi- denotes wavelength. There are E such minerals, so
tion of an unknown input mixture from its measured that e ranges from 1 to E. We shall discretize the
spectrum. This problem has been studied in the con- spectra, so that they are measured at the N wave-
text of surface mineralogy,' and conventional digital lengths X,,, n = 1,... N. Then each possible mineral is
algorithms for solving it have been proposed. 2 These described by a vector ke = (Kl ,K 2, . ••J), where K' -
algorithms are fairly slow, since serial computation is Ke(Xn). Similarly, the spectrum of the input mixture
used. Neural nets3.4 are ideally suited for applications is described by a vector c = (ClC2,... ,cN). Our objec-
such as this one, because of the high parallelism tive is to decompose the unknown input mixture into
achievable with them (as we will show). Thus, we known elements (i.e., to determine the fractional
sought to express the determination of the composi- amount x, of each basic mineral present). This is
tions as a problem suitable for solution by neural nets; given by the vector x = (Xl,X2,... ,XE), where 0 - xe - 1
this was done using the Hopfield minimization proce- and = Xe = 1. For the mixture described by x, the
dure. It is preferable that one implement neural nets spectral response at wavelength n is Ze xe . The
with hardware capable of achieving their high degree difference between this vector and the measured spec-
of connectivity. Therefore, many researchers have tral vector is a measure of how well x describes the
investigated optical implementations of these nets. 5  input mixture. One can form a variety of scalar mea-
We also consider an optical architecture to implement sures from this. The simplest such scalar measure is
our algorithm. the Euclidean distance. As we shall see below, this is

In Sec. II, a mathematical description of the problem also the correct measure to use from probabilistic con-
is developed. This is utilized as a basis for a neural siderations. We thus determine how well a mixture
network solution and an optical implementation, de- vector x describes an input spectrum by considering
scribed in Sec. III. In Sec. III we also consider an the error measure
alternative approach to our neural algorithm. Initial 2
simulation results are presented in Sec. IV, and Sec. V f- " I,- > , • (1)
summarizes our results.

This error is zero if the composition vector x de-
scribes the measured spectrum exactly. Otherwise, it
is greater than zero. To determine the composition of
an unknown input mixture, we must minimize this
error with respect to x. This ensures that the best
possible match between the measured and predicted

The authors are with Carnegie Mellon University, Department of spectra is obtained. This minimization procedure can
Electrical & Computer Engineering, Center for Excellence in Opti- be viewed as a maximum-likelihood determination of

cal Data Processing, Pitmshurgh. Pennsylvania 15213. the composition of the mixture, if we assume that the

Received 7 June 1988. difference between the measured spectrum and the
0(X)03.6935/89/153129-0552.0/0. actual spectrum (as determined by the composition) is
c 1989 Optical Society of America. due to normally distributed zero-mean noise. Then
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The factor of 1/2 is included for later convenience (the
problem remains unchanged if the whole energy func-

Ii tion is scaled by a constant factor). The constant A
0(y) weighs the relative importance of the two energy terms

in-Eq. (3); it must be chosen large enough that 2, x,. - I
for all states with low energy. Inserting Eq. (3) into
Eq. (2), the evolution equation for our neurons be-
comes

01x~t + 1) = x,<t + ,7 {y [c. - I lt 1
y -

Fig. 1. The function . - A x(t) - 1 (4)

the maximum-likelihood estimation of the composi- 1J
tion of the mixture is given 6 by the minimum of Eq. (1). where the indices e and f refer to different neurons.

To rewrite this equation in matrix-vector notation,
Ill. Neural Network Description we note that the set 1:,, KnKfnJ forms an E X E matrix

This problem is not amenable to a conventional with horizontal index e and vertical index f. Itsentries
pattern-recognition solution, because there are no pre- are the vector inner products of the spectra for miner-
determined classes into which we can classify the input als e and f. Similarly, the matrix-vector product 2,,
spectral data. That is, any combination of minerals Kfnc,, is a vector with E entries. Using matrix-vector
has to be considered. On the other hand, the mathe- notation, Eq. (4) can be written as
matical description derived in Sec. II is suitable for a x(t + 1) = x(t) - Tx(t) + a, (5)
neural network implementation. The application of
neural nets to minimization problems is well estab- where the neuron states are now a vector x. The
lished.7 interconnection matrix T has elements

The general procedure is to describe the minimiza- T=,VKeK/+A I  (6)
tion problem as the minimization of an energy function
E, which depends on a set of variables xi , where j = and is formed by adding A to every element of the
1... J. There should be no difficulty in distinguish- matrix f KeK/J and multiplying by i7. The summa-
ing between the energy and the number of elements; tion over e in Eq. (4) is acheved by the matrix-vector

thus we retain the same symbol E for both. The product in Eq. (5). The vector a has components

objective is to find the set xij that minimizes E. A set

of neurons is employed, with one neuron representing =(E Kfc.+A (7)
each of the variables xj. To minimize E, we introduce a, \ / +

a discrete time variable t, and design a neural network To obtain this from the vector Z,, c we add A to
that evolves the neuron activities in time according to v n

every component and multiply the resulting vector by
xj~ +l)= j~) -8___E ,(2) r/

+ I ax()t) One point has been neglected so far: nowhere in our

where qy is a parameter that controls the speed of con- neural description have the fractions Xe been forced to
vergence. It is easy to show that E in Eq. (2) decreases lie in the range [0,1]. Even though we minimize E

as time progresses, 7 and that the net reaches a stable when Ze Xe = 1, we need to ensure that each neuron

steady state when E attains its minimum value, since activity xe is positive and less than one, since it repre-

only then is no further decrease possible. sents a fraction. This constraint is enforced by apply-
In our imaging spectrometer application, the mini- ing a nonlinear operator 0 to Eq. (4), where

mization variables are the composition fractions xe, y foryE 0,Jl
and the energy function is a modified version of the [yly Of

=otory < 0 (8)
error defined in Eq. (1). This modification is neces- 11 for y> 1.
sary because nothing in Eq. (1) forces the sum of the Figure I shows the value of this nonlinear operator as a
fractions to one. This constraint is enforced separate- function of its input y. If a neuron change would
ly in the usual way be adding a positive semidefinite increase X, beyond one, we set x, = 1; similarly, if x,
term to Eq. (1). This term attains its minimum value would decrease to a value less than zero, x, is set equal
of zero when the fractions xe add to one. The simplest to zero. Thus the neuron evolution equation becomes
term to add is A(Xe x, - 1)2, where A is a positive
constant. This is minimized when the sum of the Xz1 t + 1) - 0 X t - T1ex'(t) + a (9)

fractions x, equals one. Thus, the energy function for
our application is Thus, the steps involved in updating x(t) [to obtain x(t

- I K 2A , )21 +1)1 are:
E 2 c, - + A x - • (3) 1. calculate the matrix-vector product Tx(t),

a) I. 2. subtract this from a,
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Fract~onal weight

3. add the resulting vector to the previous neuron slt-on,

state vector x, and
4. threshold as prescribed by the function o. M, L 2 Dots AmpS

An optical implementation of Eq. (9) is shown in Fig. P2 P

2, where P1-P3 is a standard optical matrix-vector
multiplier, which multiplies the matrix M, at P 2 by the
vector at PI. The matrix M1 is the matrix T. It is

fixed by the spectral properties of the E known miner- LEq
als, and can be recorded on a film mask (MI in Fig. 2). cost

Since A and the spectral measurements K' are greater LED2 L3 L, IN"

than or equal to zero, all the entries in T are positive. P,'4
The intensity of LED e in array LED1 is proportional A
to xe(t). The light from the LEDs in P, is expanded Dots

horizontally by lens LI, so that each LED illuminates a
row of MI. Lens L 2 integrates (vertically) the light t
leaving the columns of MI. Urn of

The vector a depends on the measured spectrum of put mixture

the input mixture to be analyzed, but does not change Fig. 2. Optical neural net architecture for the minimization proce-

from one iteration to the next. It consists of two parts dure.

as in Eq. (7). The first term, a matrix-vector product, (It is assumed, without loss of generality, that A is
is calculated on the P4 to P6 optical system. The symmetric). The problem with this approach is that
second term, a constant bias, is added after the detec- the solutions do not satisfy the constraint that the xe
tor array (Det) at P6. The matrix at Ps is also fixed (it should lie in the range [0,11. (The constraint that the
is E X N, and consists of the spectra of the E minerals), fractions should sum to 1 can be enforced by rescaling
Thus M2 can be a film mask, while the input to the the result obtained.) No simple analytic way of en-
LED array LED 2 is proportional to the spectral sam- forcing the range constraint exists; therefore our cur-
ples of the measured mixture to be analyzed. The rent method is preferred.
outputs from the two linear detector arrays at P: and
P6 are subtracted in electronics to form a - Tx. Alter-
natively, the vector a can be calculated electronically, IV. Simulation Results
since it does not change between iterations (it only The neural net of Fig. 2 and the algorithm in Eq. (9)
changes when a new spectrum is input), were simulated for the case of N = 826 wavelength

The previous neuron state x(t) must be added to the samples and E = 10 elements. The minerals used were
optically calculated vector a - Tx. This can be done ten of the most common minerals (Table I). Their
on the output detectors with electronics. It can also be reflectance spectra contained samples at 1-nm inter-
achieved by using I - T for M, which now requires vals from 400-799 nm, and samples at 4-nm intervals
negative number encoding, such as space multiplexing, from 800-1500 nm. The measurements were supplied
and the same external detector electronics. The out- by the Jet Propulsion Laboratory. A few examples of
puts of the operational amplifiers are limited to lie the reflectance spectra used (indicating the percentage
between 0 and 1 (in the appropriate units). If the net of light that is reflected at the specified wavelength)
has not converged, this vector is fed back to LED, for are shown in Fig. 3. The mixture included in Fig. 3
the next iteration. The arrangement (without nega- consisted of 50% montmorillonite and 50% dolomite.
tive number encoding and with a bias 77A added elec- The spectra of the mixtures were generated from the
tronically to the amplifiers) is attractive because it spectra of the minerals, using the linear model de-
allows us to control 7 by controlling the gain of the scribed in Sec. II. We also used spectra for different
LEDs in PI and P 4 and the output bias. Adapting 7? grain sizes of the minerals, since the grain size affects
during the iteration process is useful since it allows us the reflectance spectrum. We refer to these as large
to speed up the convergence of the neural net as is (>125 pm) and small (<45 pm) grain sizes.
explained in Sec. IV.

One obvious alternative to our neural algorithm has Tame I. mineals Mxtur Used in ow skmlatlom

to be considered. Since we express our problem as the Common minerals used
minimization of a quadratic energy function, the fol- Kaolinite Illite
lowing is a plausible alternative method: Write the Alunite Jarosite
quadratic energy function as Gypsum Chalcedony (a quartz)

Montmorillonite Chlorite
E = x'Ax + c'x. (10) Calcite Dolomite

To obtain the minimum of E analytically, differentiate Mixtures used
(10) with respect to x and set the result equal to zero. Dolomite/montmorillonite
This gives Gypsum/dolomite/calcite

x /, )A- c (Varius percentage compositions of both)
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present (2.5% and 5%). For each noise level. 10 difter-
ent mixtures were used as input. These mixtures con-
sisted of different fractional compositions of the ele-
ments of the 2 mixtures listed in Table I. For each
noise level, 100 runs were again performed (10 input
mixture spectra times 10 initial neuron conditions).

For each experimental run, we proceeded as follow:01 the 10 X 10 connection matrix T in Eq. (6) was calculat-
ed using the 10 spectra of the pure minerals, as de-

/'-' scribed above. We set A = 1.0 to weigh the two terms

in Eq. (3) equally, since both terms are of approximate-
ly equal importance to us. Ten neurons were used in

" ,r j each experiment, because 10 minerals were used. Ini-
:' / /i' tially, a random number uniformly distributed be-

,i / tween 0 and 2/E = 0.2 was assigned to each neuron.
/ This assures that the expected value of the sum of the

a / montoriiion.,e neuron activities equals 1, as it should be because the
. o neuron activities represent fractional compositions.

/°,. - * ,,i,_ The 10-element vector a was then calculated using Eq.
0 chlor,.i-_ (7). This vector depends on the input spectrum to be

oio-or. identified. The step size parameter il was initially
chosen equal to l/Trace(T), since this is the largest

0 value of 17 which is certain to lead to convergence. As
2r0 sto 600 Boo n000 the net converged to its stable state, convergence was

accelerated (to reduce the number of iterations) by
doubling i whenever the sum of the squares of the

Fig.3. Typicalspectraoffourminerais, anda mixtureoftwoofthe differences of the neuron activities at successive time
minerals. steps decreased by a factor of 4. Since the change in

neuron activity x(t + 1) - x(t) is linear in i? from Eq.
(4), the sum of the squares of this difference will be

Three sets of experiments were performed. In the proportional to 172. Thus, q should be scaled in propor-
first set, we investigated the ability of the neural net to tion to the square root of the sum-of-squares. Chang-
determine the identity of an input spectrum that was ing iq when the sum of the squared differences was a
one of the ten minerals (with only large, only small, and factor of four was used, since this choice gave good
with both small and large grain sizes used). In the first performance. Whenever the errors increased from
case, the spectra K' used to calculate the connection one iteration to the next, we divided 17 by 1.5, where the
matrix Tej in Eq. (6) belonged to samples with large 1.5 empirical factor has been found to be suitable for a
grain sizes, whereas all the spectra used in the second large range of data. This assures that the system will
case were obtained from small grain sizes, and the third remain stable by reducing q when it becomes too large
case used some samples with large grain sizes and for stable convergence.
others with small grain sizes. Each of these 3 tests in The net was iterated according to Eq. (9) until it
the first set of experiments consisted of 100 runs. A converged (that is, until no neuron activity xe changed
different I of the 10 original spectra ke was used as by more than a prespecified amount). For the pure
input spectrum c for 10 of the runs. The 10 runs with inputs, the terminating tolerance was always chosen to
the same input spectrum differed from one another be 10- , since this leads to reasonable accuracy (<6%)
only in the different initial neuron conditions that in most cases, without requiring an excessive number
were used, as we describe below. The inputs in this of iterations. For the mixture inputs a smaller termi-
first set of experiments are referred to as pure inputs nating tolerance (10-s) was required, because the cor-
(i.e., only one mineral was present). rect answers are now not simply zero or one. These

The second set of experiments investigated the abili- tolerances mean that the difference in the value calcu-
ty of our algorithm to recognize the spectra of the pure lated for any element xe on successive iterations t and t
large grain-size minerals in the presence of noise. + I was less than 10- 4 or 10- 5.

Each spectral measurement was perturbed by n% of Our stopping criterion used small differences in the
noise. This was achieved by adding a uniformly dis- neuron states x between iterations. These are used to
tributed random number to each measurement. This determine digitally when we enter the minimum-E
produced a random variation in the value of the reflec- region of the E vs x curve. With a lower processor
tance by at most n% of its original value at each X.. accuracy (such as we would expect with an analog
Values used for n were 2.5% and 5% with 100 experi- optical neural net), the processor accuracy is also the
mental runs executed for each noise value, as above, accuracy to which we can calculate each of the x-

Finally, we studied the performance of the neural values. We should thus be able to obtain (for a 1%
net when mixtures were used as input without noise accurate prcessor) a final x-state within 1% of the
and with the same two nonzero noise levels used above energy minimum. This issue merits further research.
3132 APPLIED OPTICS / Vol. 28, No. 15 / 1 August 1989



For the specific imaging spectrometer least-squares nating tolerance. The results in Table II also indicate
problem, monitoring the change in E rather than the good performance in the presence of additive noise.
change in x between iterations would also provide a When 2.5% noise was added to the spectra, no notice-
useful stopping criterion. Our choice is more general, able degradation in the precision occurred, but the net
however, since it will provide a useful stopping criteri- required more iterations to converge. Increasing the
on even if the energy magnitude of the best possible roise to 5% did not appreciably affect the performance
solution is not known. of the net.

Table II shows the results obtained. Column 1 de-
scribes the type of spectra K' used for a given run. V. Summary and Conclusion
The first three tests (experimental set 1) used one A new optical neural net architecture and algorithm
input mineral with no noise present. The next two were introduced to find the composition of a mixture
tests also used one input mineral, but with noise added given its spectrum and the spectrum of the possible
(set 2). The final three tests involved mixtures as minerals. A quadratic cost function is minimized to
input, with and without noise (set 3). Column 2 lists find the optimal composition. This includes the con-
the percentage of noise n by which the spectra were straint that all fractions sum to unity. The constraint
perturbed. Column 3 lists the number of iterations that all compositional fractions lie between zero and
required to reach the stopping criterion in each case, one is enforced by using neurons with a nonlinear
and column 4 gives the precision of the result (the transfer function.
largest amount by which any stable neuron state dif- Simulation results were presented that indicate that
fered from the true compositional fraction). Note the neural net algorithm performs satisfactorily. Dif-
that this is a worst case precision error. ficulties are due to input spectra that are very similar

We see that the neural net was successful in classify- in shape. Techniques to overcome this were ad-
ing the input spectra to reasonable accuracy. The dressed. In general, the number of iterations required
worst performance occurred when small grain sizes for the net to converge was large. This indicates that
were used. This occurred because the shape of the serial simulations of the net are not realistic for large
spectra of several of the minerals were very similar applications, and emphasizes the necessity of using a
(see, for example, the spectra of illite and chlorite in parallel system such as our optical architecture.
Fig. 3). When the spectrum of only one of them (illite) This research was funded by a contract from the
was present, the net converged to a state containing a Strategic Defense Initiative Office of Innovative Sci-
mixture of these two minerals (see test 2 in Table II). ence and Technology, monitored by the Office of Naval
In this case, we decreased the terminating tolerance Research (Contract N00014-86-K-0599), with partial
and found that after 5000 iterations the net was still
slowly converging towards the correct solution. For 958097).
such minerals, it is preferable initially to classify both
into one class and then use postprocessing (e.g., using a References
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Input spectra n (%) iterations x, (%)

Pure, large 0 738 3.39
Pure, small 0 1094 11.33
Pure, large 0 940 5.42

and small
Pure, large 2.5 1155 5.16
Pure, large 5 1153 4.91
Mixture, large 2236 0.98
Mixture, large 2.5 3603 1.46
Mixture, large 5 3537 1.86

1 August 1989 / Vol 28. No 15 / APPLIED OPTICS 3133



8

CHAPTER 5

"Multitarget Tracking with Cubic Energy Optical
Neural Nets"



Multitarget tracking with cubic energy optical neural nets

Etienne Bamard and David P. Casasent

A neural net processor and its optical realization are described for a multitarget tracking application. A cubic
energy function results and a new optical neural processor is required. Initial simulation data are presented.

I. hntoduon an energy function E, which is a function of the neural
Considerable interest currently exists in neural net- activities Xi. In this model, the evolution of the activi-

works. 2 due to their adaptive properties, fault toler- ty of each neuron (its rate of change with time) is
ance, and high computational throughput. One can described by
distinguish current neural processors by whether they dX aE.
concern pattern recognition and associative memo- dt OX(
ries3- 5 or multivariate optimization.. 7 Our concern is The time evolution of the energy function is
with the application of neural networks in optimiza-
tion problems. As a specific case study, we consider dE OE dX (2)
multitarget tracking. d =  , i d t

In Sec. II, we briefly review the evolution equations To show that the model in Eq. (1) minimizes E, we
as used in neural minimization. Section III contains a substitute Eq. (1) into Eq. (2) and obtain
definition of the specific problem we consider, and Sec.
IV is a formulation of the constraints in our multitar- dE _ IO (32

get tracking problem as an energy function to be mini- d- = - x ")
mized. New optical architectures for the implementa- Equation (3) shows that E is a decreasing function of
tion of the equations in Sec. IV are then described (Sec. tion (ho tht E is aoerea fciniof
V). Simulation results are presented in Sec. VI. Our time t. The energy E will converge to a local minimum
work contains three new ideas: the application of the as t progresses. Thus, the set of neural activities eX
Hopfield model to a multitarget tracking problem; the in the final stationary state describes a minimum ener-
use of a nonquadratic energy function in the minimiza- gy state of the system.tionprolemandan oticl achiectue wichcan In our work, this basic algorithm is modified by
tion problem and an optical architecture which can using discrete times and by employing binary neuroncalculate the evolution of a system with such a nonqua- activities Xi. With binary Xi, the neuron activitydratic energy function. (neuron state) in Eq. (1) can now be replaced by
N. Newel Model if <

We use the Hopfield model6 as a minimization net- X axj (4)
work. We represent the state of the neurons by X(t), ' , .aE > 0,
where t is a time variable and i labels a particular 1f aXneuron within the set of neurons. For an optimizationproblem, we wish to find the set of X that minimizes that is, the state of neuron i is binary and depends onthe energy as noted. The choice in Eq. (4) insures that

the energy function is approximately minimized in the
stationary state, as we now show.

With unit time steps, we replace dX/dt by AX and
dE/dt by AE. To find the change in energy due to a
state change of neuron i, we recall the Taylor expan-
sion of E(IXi + AXJ) in the vicinity of E(IXjI):

The authors are with Carnegie Mellon University, Department of a-E
Electrical & Computer Engineering, Center for Excellence in Opti- E(X + AX,}) - E(X.i) + T,- AX,
cal Data Processing, Pittsburgh, Pennsylvania 15213.
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One can therefore calculate the change in neural ener- rG+ , and r" 2, respectively. [he subscripts a, ,, and -y
gy AE due to the state changes AXi of the neurons by are used to refer to a particular one of the N M different
AE = E(IX, + AXJ) - E(QXi}). From Eq. (5), keeping measurements at a given time step, the time steps
only the first term, being indexed by the superscript. We denote the vec-

tor difference between a specific measurement (one of
A AX, + . (6) the a) at time step a and one of the 0 measurementsat

time step a + I by dO = r r Similarly, d7+1

Using Eq. (4) in Eq. (6), we see that, if aElaXi is denotes the vector distance between a measurement j3
negative, we set the state Xi of neuron i to one and if at time step a + 1 and a measurement Y at a + 2. In
OE/dXi is positive, we set Xi to zero. Thus, AE is terms of these vector distances, the vector distance
negative. In Eq. (6) the higher-order terms were omit- measure we wish to minimize for a sequence of three
ted. Thus, the prior analysis is only approximately time steps for all measurements is
correct, and the energy of the system actually can (7)
increase on some iterations. It turns out that this is
more beneficial than harmful, since it allows the sys- The minimum of Eq. (7) assigns one measurement in
tem to escape from shallow local minima, each of time steps a, a + 1, and a + 2 to the same target.

Since we express the multitarget tracking problem Note that D in Eq. (7) is the norm of a vector differ-
as a constrained optimization problem, it is also possi- ence. This ensures that two successive distance vec-
ble to use conventional (non-neural) optimization tors (for time steps a and a + 1) should be collinear to
techniques. However, such techniques are not suit- minimize D; that is, D is minimized for straight line
able for optical implementation, and generally require tracks. With equal time step increments and a
much more computation than the Hopfield net. We straight line trajectory with no acceleration, the two
therefore restrict our attention to the techniques de- distance vectors will be equal (for true target measure-
scribed in this section. ments). Thus D will be 0 for the case of three collinear

and evenly spaced measurements in three successive
III. Problem Definition and Case Study frames.

The measure D will now be used as a basis for the
The minimization problem we concder is a multitar- description of an energy function E which, when mini-

get tracking problem. The -- r :io we consider as- mized, solves our problem. We label each binary neu-
sumes: ron with three indices, such as Xi,., where i is the

(1) NT targets are to k r ied with NT known and target index, a is the measurement index, and a is the
fixed (being determined by the track initiator), time step index. This neuron is active (i.e., Xi,,. = 1) if

(2) There are N?,, measurements each time step or the ith target is associated with a specific position
frame of data. NM is fixed and is the maximum num- vector r' (one of the measurements a) at time step a,
ber of measurements we will accept in any time frame. and otherwise X, = 0. The energy function to be
This is achieved as explained below. If the number of minimized for the optimization problem in Sec. Ill can
peaks (measurements) is less than NM, we lower the be written as
detection threshold or insert artificial measurements
to insure that at each time we have NM ?: NT measure- E = A " X.X
ments.

(3) The targets do not accelerate appreciably during
the time steps under investigation and thus their tra- + A,
jectories are approximately straight lines. I . .. '

(4) Each target corresponds to no more than one d

measurement at each time. + A3( X,G - NT
(5) Each measurement is due to no more than one .

target at each time. (That is, we ignore crossing tar-
gets for now.) + A, S' ' ' ' ,x,.,,+X,,,.+2, (8)

(6) At each time step, each target must be assigned a I
to one measurement. Our selection of NM in item (2)
insures that NM ?: NT so that this rule can be satisfied. where A -A 4 are positive constants. Their choice is

The optimization problem is to assign one track to discussed in Sec. VI.
each target, i.e., for each time step one set of detected We now discuss the terms in this energy function to
objective is to find the NT best straight lines in the provide an understanding of it. We first note that all
given data. terms are positive semidefinite. Consider the first

term: each term in this sum is either 0 or I (since
binary neurons are employed). Note that X,,,0 and

IV. Problem Formulation Xj,, denote neuron states associated with targets i and
We first present our notation, introduce the distance j (any of the N-r targets) and some measurement a (of

measures we wish to minimize, and then develop a the NM) at time step a. The first term contains the
neuron energy description. We denote the measured sum over the measurements and time steps of products
position vectors at time steps a, a + 1, and a + 2 by r,,, of these neurons. Since only the target index (i or j)
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differs in the X product, a given term in term 1
can be one only if targets i and j are assigned to the (X...) C-lculate {I Trso
same measurement a at the same time step a. Since
we sum over a, a, i, and j, term 1 is zero if and only if at
each time step no measurement is assigned to more
than one target. Thus, minimization of this first term
occurs when each measurement is associated with no
more than one target. It therefore enforces condition
(5) in Sec. III. Fig. 1. Block diagram of the multitarget tracking neural processor.

The second term in Eq. (8) consists of a sum of
products with different measurement indices (a and 0)
on the neurons. It is therefore minimized when one
target is associated with no more than one measure- plies that this minimization is repeated for each time
ment (a or 0) at the same time step a. Thus term 2 is step (using the prior two frames of data).
included so that the system satisfies condition (4) in A possible variation to the energy function in Eq. (8)
Sec. III. is the omission of the first term. Then, one would not

We next consider term 3. For a fixed time a, the set be enforcing the assignment of only one target to each
of neurons Xj.0 for the various target indices i and input measurement (this case arises if two paths of
measurement indices a can be arranged in a matrix different tracks cross). In our simulations, this term
with horizontal index a and vertical index i. When was retained. We intend to do more work on the
one measurement has been assigned to each target, this target-crossing problem in the future.
matrix has a single one in each row i, indicating which Note that the energy function in Eq. (8) enables us to
measurement is assigned to this target. Thus, i Y tolerate both spurious measurements and the absence
Xi.. for a fixed time a is the number of nonzero entries of measurements for some targets at some time steps.
of the matrix above. This sum equals NT when condi- To achieve this, let NM be the largest number of mea-
tion (5) of Sec. III is satisfied. Thus, term 3 is mini- surements at any of the Np time steps. If a given
mized when all NT targets are each associated with one frame has M < NM target measurements, we set NM -
measurement at each time step; it is included so that M measurements equal to the zero vector. (In our
condition (6) in Sec. III is satisfied. Hence, the first reference frame the zero vector lies in the center. This
three terms in Eq. (8) ensure that the measurement- choice minimizes the effect of missing measurements
target matching is admissible. on D, for the case of a uniform spatial distribution of

In term 4, both the time step and measurement targets). Spurious measurements (if they have ran-
indices on the three neurons in the product differ. dom position vectors, as they should) will not be as-
This term selects a measurement (from each of the sets signed to true target tracks because of the energy mini-
labeled by a, 0, and -) in each of three successive time mization step. If both spurious and missing
frames for each target. The measurement-target measurements are present, we have found that the
pairs are selected such that these three measurements spurious measurements are assigned to the same
lie closest to a straight line, with the search done for tracks as the missing measurements (zero vectors).
each target and for each measurement a in each frame. The time evolution of the neurons is required to
To see how this is accomplished, recall that D' inEq. result in a neural system that minimizes E in Eq. (8).
(7) is calculated for three successive time steps. The This is given by the derivative of Eq. (8), i.e.,
three neurons in term 4 in Eq. (8) have their time
indices appropriately stepped. For a fixed time frame, a-. = 2A, I X, + 2A2 I X,11
the three X terms can each be represented by a matrix ix, 000
with horizontal index a and vertical index i, as before.
For a fixed target i, the neuron choices to be considered + 2A, X,. - N)
occur in the same row (row i) in each of these matrices. NT)
Each row of each matrix should have only a single one,
because of condition (5) in Sec. III. The best choice + A, D X :lD,X .+1)X, +2
for the position of these ones is determined as follows.

Consider that there are ten measurements in each + DTX,(o_X, (, + D~Xf°(2)X,.o .l. (9)
frame. We select a measurement a in frame a. For
the single measurement a chosen, there are ten possi- Figure 1 shows the block diagram of the neural mul-
ble choices for the measurement (indexed by 0) in the titarget tracker described by Eqs. (4), (8), and (9). We
second frame and for each of these there are ten possi- produce eE/OX in Eq. (9) from X and threshold aE/OX
bilities for the third measurement indexed by y. For as defined in Eq. (4) to produce the new X with E given
each of these 100 combinations, the three X factors in by Eq. (8) from which OcE/OX is obtained in a closed
term 4 could all be 1, but for only one set of these will D loop. In this design, the activities of the neurons
besmall. Minimization of E for this term ensures that evolve according to Eqs. (9) and (4), and thus their
the set of three successive measurements chosen (for states will evolve to a steady-state energy minimum.
each measurement in the first frame) will be the set This minimum indicates which target should be associ-
closest to a straight line. The summation over a im- ated with which measurement at each time step.
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U 61 L1 SLM, L2 U step with T and the constants A I-A 4 fixed for all prob-
lems.

Term 4 in Eq. (9) is more complex. Each of the
three parts of this term is similar and contains the
product of two different neuron states which we can
relabel as Xk and X, times a tensor D of rank three. If
we think of Xk and X, as components of a vector x, the
product of two different neuron states XkX1 for all k
and 1 is a matrix with components XkX, (where k and I
are the row and column indices, respectively). This is
the vector outer product (VOP) matrix xxt , where the

_4 superscript t denotes the transpose. In terms of thisnew vector labeling scheme, term 4 can be written as
(a)

Y4 = ,XX, (11)

92where 4 denotes the jth component of term 4 in Eq.
(9). We can view D as a number of matrices. The sum
of products in Eq. (11) for a given j is the sum of the
point-by-point products of the elements of the VOP
matrix and one of the matrices in D. The result for all
j is a vector Y4, which is called 9 the tensor-matrix inner
product, i.e.,

M 2Y, =D~x (12)

Since this is not a simple matrix-vector product, it
cannot be calculated in the same way as the other three

-M terms in Eq. (9). In addition, D changes with the
M input data whereas the matrix T in the other terms is

S n sfixed. We now investigate how the linear algebra op-
Fig. 2. Schematic of an optical neural processor with (a) quadratic erations and thresholding described in this section can

energy terms and (b) cubic energy terms, edn otcly
be done optically.

V. Optical Architecture
We now discuss how to realize the terms in Eq. (9) as As has often been noted, connectionist architectures

linear algebra functions. We consider the case of NT = are well suited for optical implementation since optical
10 targets, NM = 10 measurements, and Np = 3 time systems easily achieve large numbers of intercon-
steps. There are NT X NM X Np = 300 neurons that nects.1° In the optical design of the Hopfield net by
represent the different Xiaa. We represent these neu- Psaltis and Farhat,1 ,12 a matrix-vector multiplier was
rons as a vector x with elements xk, where each value of sufficient. This optical realization is suitable for im-
the index k denotes a different (i,a,a) combination. In plementing time evolution equations that are linear in
steady state, x will have thirty "one" entries (ten mea- the neuron activities X (or equivalently, neural sys-
surement-target pairs for each of three time step val- tems and applications in which the energy function is
ues a). Term 1 in Eq. (9) is the sum of a number of quadratic in X). Such an optical architecture is most
such vectors and can thus be described as a matrix- efficient if only non-negative connection matrices are
vector product 2AITIx = yl. The elements ThA of the involved. Thus, the first two terms in Eq. (9) and the
binary connection matrix T, are described by positive definite part (2A 3 Ei F- Xio) of the third

term can easily be calculated by unipolar optical ma-
= ,- (10) trix-vector multiplications. Our optimization prob-

where the indices k and I denote the different sets of lem involves one energy term which is cubic (term 4)
target/measurement/time parameters (iaa) and (jj b), and a negative term (part of term 3). The optical
respectively. Since both k and I range over 300 values, realization of these terms is now discussed.
T, is a 300 X 300 matrix. This Yt term has nonzero Equation (9) can be realized on the optical system of
contributions to the output only for indices corre- Fig. 2 as we now detail. This optical system is best
sponding to different targets (i * j) but the same drawn in two parts: Fig. 2(a) (which performs a ma-
measurement (a = 6) and time step (a = b). trix-vector multiplication and implements terms 1-3)

Terms 2 and 3 in Eq. (9) are other sums of vectors x and Fig. 2(b) (which implements term 4). The data
and can likewise be written as matrix-vector products plane BI is common to both parts of the optical system.
2A 2T2X - Y2 and 2A 3T3x = Y3. For these first three For simplicity, only the essential lenses are shown. In
terms, the connection matrices are fixed and thus we Fig. 2(a), the vector data on a I -D bistable device 13 BI
can form Tx = (2AIT, + 2A 2T2 + 2A3T3)x in a single is the current neuron state x. It is imaged vertically
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and expanded horizontally by Li onto a 2-D spatial
light modulator (SLM1) which contains the matrix 0 D D
interconnection data T in Eq. (10). This is a fixed 111 112 113
interconnection pattern that is independent of the 0 D D
data. Thus, it can be recorded on film and need not be 211 212 213
altered. The light leaving SLM1 represents the point- 0 0 D
by point products Tix,. This light is integrated verti- 31 1 .2 3 .
cally and input back to BI (by four mirrors AM in the D D D
version shown). This forms the matrix-vector prod- 121 122 123
uct Tx = (1: Tljxj,Y T2jx), . . T,,x,). D 0 D

The same B1 is also present in the system of Fig. 221 222 223
2(b). In Fig. 2(b), its output is expanded horizontally
by L1 and rotated by 90' and expanded vertically tby D D D
the beam splitter (BS), mirror (M), and lens L21. - 2
These two expanded patterns are superimposed on a D D D
second bistable device B2 with horizontal and vertical 131 132 133
indices k and 1. The light intensity incident on ele- D 0 0
ment(k,l)ofB2isXk+Xl. When the threshold for B2 231 232 233
is set to trigger only if both inputs are active, the B2 D D D
output is the binary VOP of the B1 data. This VOP 331 332 0333
matrix is imaged onto SLM2 where it multiplies sever- Fig. 3. Details of the values written on SLM2.
al multiplexed D matrices element by element. The
computer-generated hologram (CGH) behind SLM2 for each j in a different region of B1. A CGH could be
directs the proper element-by-element products to dif- placed between B2 and SLM2 to replicate the B2 data
ferent portions of B1. To implement term 4 on this onto the proper regions of SLM2 such that the CGH
system, we form x on B1, the VOP matrix xx' on B2, behind each region (3 X 3 region for the example in Fig.
and the tensor-matrix inner product y4 = D * xx' on 3) of SLM2 could be a simple spherical lens plus a
B1 using SLM2 and the CGH. We now consider the grating at the required spatial frequency and orienta-
multiplexing data format on SLM2 and the CGH used. tion. However, since the CGH is fixed and indepen-

In our simplified index notation (Sec. IV), the ele- dent of the input data, it appears that it can be fabri-
ments ofthe y 4 vector output due to term 4 aregiven by cated on film with sufficient resolution to allow one
Eq. (11). Consider the case when j, k, and I range from CGH to be used with improved light budget efficiency.
1 to 3 in Djkl, Xk, and X,. The neuron vector x then has We detail this later.
three elements and the VOP matrix on B2 is 3 x 3. Next, we consider how the negative part of term 3 in
Each element XkXj must multiply the three different Eq. (9) is handled. Recall that B1 is common to both
elements DjkA corresponding to the three different val- parts of the system [Figs. 2(a) and (b)]. Thus, the
ues that j can take given the indices k and 1. One input to B1 contains the sum of all the non-negative
possible multiplexed arrangement for the SLM2 data terms in aE/dXia, in Eq. (9), i.e., the jth element on the
Djkl is shown in Fig. 3, with the VOP elements in row 1 input side of B1 is 8E/dXj + 2A3NT [where j corre-
of B2 corresponding to (k,l) = (1,1), (1,2), (1,3) and the sponds to (iaa)]. Thus, we set the threshold of B1 to
elements of row 2 corresponding to (k,l) = (2,1), (2,2), be 2A3NT and hence achieve the subtraction of the
(2,3), etc. The spatial size of the elements on B2 and positive and constant 2A 3NT portions of term 3 by
SLM2 and the imaging optics (not shown) from B2 to thresholding without the need to compute negative
SLM2 are such that VOP element (1,1) illuminates the numbers and the proper neuron vector x emerges from
first three elements in column 1 of Fig. 3 (i.e., DIII, B1. We note that the contents of SLM2 need not
D211, and D311), VOP element (1,2) corresponding to change between iterations (in minimizing the energy
XIX 2 illuminates the first three elements of column 2 E) for a given set of input measurements. Its contents
(D112 , D212, and D312 ), etc. The bold lines in Fig. 3 change for each set of input measurements, but such
indicate regions of SLM2 illuminated by one element distance calculations are needed for most multitarget
ofB2. Since D is a tensor of rank 3, it is not possible to tracking problems.
assign one spatial dimension (horizontal or vertical) to We next consider an improved version of the system
each rank (as is possible with a tensor of rank 2, i.e., a of Fig. 2(b) with reduced space-bandwidth product for
matrix). This arrangement in Fig. 3 multiplies each B2andSLM2. Toseethesignificanceofthis, consider
VOP element XkXj by the three possible j values in the case of NT = 6, NM = 7, and Np = 5. The vector x
Dik and thus forms the point-by-point product of the has6 X 7 X 5 = 210 components, the VOP has 210 X 210
VOP matrix and the different D matrices. The CGH components, and SLM2 requires 210 X 210 X 210
behind SLM2 focuses all products with the samej onto pixels. Clearly, for large values of NT, NM, and Np,
the same region of B1 (i.e., for the 3 x 9 example in Fig. this architecture becomes unrealistic. Fortunately,
3, it sums the light leaving the first, fourth, and seventh not all the terms in xx' are required and most elements
rows, the light leaving the second, fifth, and eighth of D are zero. In Eq. (9) we see that only those values
rows, etc). This forms the sum over k and /of D),XX,Xl of X,,,Xjgb with i = j are used. To take advantage of
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this, we divide the vector x into NT smaller vectors z, (i sft
= 1 .. NT), one for each target j, with each vector of
size NM X Np. Thus, the full vector x can be written as AAS cOi o,

X= (zl, Z... .,Z' This allows us to calculate the
VOP zz, of each vector separately, multiply each by
the proper elements of D point by point, and sum up
the products as indicated in Eq. (9). IL

We now discuss how to efficiently separate the ten-
sor D into several smaller matrices. Recall that the I H*2
full tensor D is described by NTNMNI' matrices, each
of dimension NTNMNP. However, the only nonzero Fig. 4. Alternative optical architecture to implement cubic energy

elements of these matrices occur for i = i and do not terms.
depend on the value of i or j (the entries of D do not
depend on the target, since the calculations of the olding, the result on B2 is the desired NT VOPs of the
elements of D involve only distance calculations on the NMNp element vector in each of the NT regions on BL.
measurements). The fact that only three adjacent These VOPs thus emerge from B2 as NT matrices
time steps a are included in the D calculation further horizontally separated, with each matrix of dimension
reduces the number of nonzero entries. We chose to NMNp.
separate the D tensor into NM matrices, each of dimen- The architecture in Fig. 2 (even with the reduced
sion NMNp. To see how this is possible, recall that SLM2 and B2 resolution requirements) requires fast
each distance measure is associated with three mea- nonlinear optical devices for BI and B2 (since they
surements (a, 0, and -y) at three different sequential limit the speed for one iteration of the system). Since
time steps. A given set of pairs of two measurements such devices are not yet readily available, we present
at two different (not necessarily successive) time steps the alternative architecture of Fig. 4 that does not
is described by a matrix of dimension NMNp. There require a nonlinear optical device. Rather, it com-
are NM possibilities for the third measurement in the putes the vector outer product by feeding the z vectors
other time step of the three in sequence. Thus there to the rows and columns of an electroded SLM such as
are NM such matrices, each of dimension NMNp, that a ferroelectric liquid crystal.' 4 Thus, SLM3 in Fig. 4
describe the tensor data D. can be substituted for the 2-D bistable device B2 in Fig.

This division is attractive since each of the NT = 6 2(b). The outer products formed by SLM3 are imaged
reduced size 35 X 35 (when NMNp = 35) VOP matrices onto SLM2, where they multiply D, and the CGH
can now be multiplied by each of the NM = 7 D matri- focuses the terms belonging to the same sum to the
ces. After summation of the proper point-by-point same point on the detector array DI which now re-
products, the output is NT = 6 vectors, each of dimen- places Bi in Fig. 2. The thresholding is done electron-
sion NMNp = 35, i.e., the 6 X 35 = 210 element neuron ically by an array of operational amplifiers fed from
state vector. Thus, this new arrangement requires the detectors DI. These detector outputs provide the
that we calculate six 35 X 35 VOPs (i.e., B2 requires electronic inputs to SLM3 in Fig. 4.
only 6 X 35 X 35 = 7350 elements), and SLM2 is only of The architectures which we have introduced in this
size 7 X (35 x 35). We have thus reduced the space- section are quite complicated. We do not find this
bandwidth product of SLM2 by a factor of over 1000. surprising: it is well known that the multitarget track-
B1 is still a 1-D SLM of size NTNMNp = 210 elements ing problem is very hard. Therefore, any parallel ar-
(one for each element of x). This size for x is still much chitecture which attempts to solve this problem in real
less than for cases when one assigns one neuron for time will probably be rather sophisticated.
each possible single target state (position in x and y)
for every time step n (i.e., xyn neurons, where x and y V1. Simulation Reults
are the number of pixels in the (x,y) projections of the The above neural net and algorithm were simulated
measurement space, respectively). Our assignment of for the case of NT = NM = 4 and Np = 5. A256 X 256)X
one neuron for each measurement for each target for 256 3-D (xy,z) space was used. The initial four mea-
each time results in a much smaller number (since the surement positions were chosen from a random num-
number of measurement points per frame is usually ber generator. The velocities and directions of each
much less than the number of 2-D pixels in one image target were similarly chosen. Np = 5 equally spaced
frame). time steps were generated for each target. The target

The NT VOPs of the partitioned BI data can be directions were evenly distributed over 3600. They
produced on B2, by replacing Li in Fig. 2 by a CGH generally ranged in length (in a 2-D projection) by a
that is a set of NT cylindrical lenses with gratings at factor of 5:1 with the longest track of five time steps
different orientations and with different spatial fre- occupying -70% of the field of view. To simulate
quencies. This LI lenslet CGH array focuses the NT imperfect measurements, each position was perturbed
sections of x on the vertical BI device onto NT differ- by n% of noise. This was achieved by adding a uni-
ent horizontal regions of B2 and replicates the vector formly distributed random number to the measure-
data in each of the N~r sections horizontally at B2. As ment. This produced a random variation in the loca-
before, L2 expands x vertically onto B2. After thresh- tion of the measurement by at most n% of its distance
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from the origin (the center of the 256 X 256 X 256 4rE,RATO i

space). 
19 9l JFor each run (corresponding to a given value n% of 4

noise), ten different initial data conditions (initial tar- 2 EM
get positions, velocities, and directions) were used. .1 E
Thus, for each value of noise, ten sets of four target 1 , 2 3 4
tracks were processed. The initial conditions (the
neuron states at which the neurons were started in the E IM
processing) were chosen by randomly perturbing the
all-equal condition (in which each coordinate is as-
signed to each target with equal probability). This is
detailed more fully in Hopfield and Tank6 and motiva- ITERATION 12
tion for randomizing initial conditions is also provided
there. Ten different random perturbations were used
in the ten simulations in each run. The A1-A 4 coeffi-
cients were chosen to equally weight the first three
terms in Eq. (9), i.e., A, = A 2 = A3 = 15 with A 4 chosen
to be less (A 4 = 1.8). Larger A 1-A 3 values were used to frERAnOf 14

give more weight to the first three terms in Eq. (9), i.e.,
we must have the proper form for the matrix X,~.A i,,.
and A2 should be chosen equal (since these terms cor-
respond to enforcing the correct row and column struc-
ture, respectively, and are thus equivalent by symme-
try). A3 could differ from these terms since it ITERA71ON 1S
multiplies a different type of term; on the other hand,
the first three items in Eq. (9) have similar roles and it O 1 0 E G
was found that A3 = A, = A 2 gave good results. Term 4
is given less weight (A4 = 1.8) since it involves the sum
of more products than do the other terms and satisfy-
ing conditions (1), (2), (4), (5), and (6) in Sec. III (terms Fig. 5. Typical example of the time evolution of the neural states.
1-3) is essential. No detailed optimization of A1-A 4
was attempted.

The coefficients D'# and the connection matrix (T) Table I shows the results obtained. Column 1 lists
were calculated. The t reshold 2A 3NT in term 3 in Eq. the percentage noise (positional variation) introduced
(9) was slightly increased (from 2A3NT to 2A3NT + into the measurements. Column 2 gives the percent-
0.035). We found this to be helpful when noise is age of runs that converged in less than 50 iterations
present. Such an increase compensates for the ne- and column 3 gives the average number of iterations to
glected higher-order terms in the Taylor expansion in convergence for these cases. We restricted the num-
Eq. (6). In the simulation, the neural activities were ber of iterations to 50. If convergence is not obtained
updated as they were calculated, i.e., the state of the after 50 iterations, we call this an error. If the system
first neuron was calculated (using the most recent converged to the wrong set of measurement-target
values of all other neurons) and then the state of neu- pair assignments, this is also an error. As seen, the
ron one was updated before calculating the state of neural net converged in much less than 50 iterations on
neuron two, etc. This better models8 a continuous the average. Also, we found that whenever the net
time rather than a discrete time system. After one set converged, it converged to the correct target-measure-
of updates of the neurons, a new iteration commenced ment matching. A proof of this remains to be derived
until the neural net converged. The serial mode neu- (but from these initial tests, one should be able to
ral updating results in faster convergence than if all accept results that converge with a high probability).
new neuron states are calculated in parallel and simul- At low noise (n = 0% or 2.5%), the neural net converged
taneously fed back, as is usually done.7  to the correct solution for all 40 target tracks (i.e.,

excellent performance was obtained). As noise in-
creased, correct convergence or two other conditions
occurred (the neural net wandered with no apparent

Tero 1. SimlatlI R"uhs fca Trackinq of 4 Teiget Th o T trend to convergence or it oscillated between two
Slope states, one being the correct solution and the other

Noise Successful Average no. of differing in one target-measurement pairing).
S(%) iterations Figure 5 shows a representative example of the evo-

0 100 19 lution of the neurons to a stable state for one set of
2.5 100 16 data. In Fig. 5, each rectangle in the 5 x 5 grid shown
5 90 20 represents the 4 X 4 matrix X,,. for i = 1-4, a = 1-4,
7.5 80 13 and a fixed (the assignments at one time step). The
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matrices from left to right on one row correspond to targets are being measured simultaneously, but are
different time steps a = 1-5 and the matrices in the processed one by one. The parallelism of our neural
different rows are the neuron states after various num- architecture means that it can perform at a much
bers of iterations, as indicated. The horizontal axis of higher rate. We therefore believe that this architec-
each matrix has four divisions, corresponding to the ture is prototypical of the types of system that will
four different targets which are assigned to the mea- have to be used to successfully deal with a complicated
surements. The four different measurements in a giv- multitarget scenario.
en time frame occupy the various rows of the indicated
matrix. A dark spot at position (i,v) indicates that Funding for this research was provided by a contracttarget i has been assigned to measurement a. The from the Strategic Defense Initiative Office of lnnova-

tive Science & Technology, monitored by the Office of
neural net has converged if the matrices are unchanged Naval Research (contract N00014-86-K-0599).
between two adjacent iterations. The targets are cor-
rectly tracked if Xi,,. (for a fixed) has only one entry References
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Abstract only one position and one velocity vector. Unresolvable
crossing targets and spurious measurements can still be

Multitarget tracking over consecutive pairs of time handled if these assumptions are not true, as our initial
frames is accomplished with a neural net. This involves results indicate. They are only invoked for simplicity in
position and velocity measurements of the targets and a this particular investigation. Finally, it is assumed that
quadratic neural energy function. Simulation data are no acceleration occurs between the two time frames so
presented, and an optical implementation is discussed. that velocity is constant for each target over the time

span between samples.
The interconnection pattern linking the measurements

of one frame with those of another is unique due to the
one-to-one correspondence condition. The problem is
solved with a neural net by assigning each neuron X,, to

Since its original inception the Hopfield neural network one of the interconnections between measurements i and

[1] has been used to solve a variety of problems, including j in the two frames. With N measurements per frame

associative memories and multitarget tracking. A prior there are N 2 neurons required. The relative activity of

multitarget tracking neural net tracked each set of three each neuron indicates the validity of each connection be-

consecutive time frames using a cubic energy function tween measurements in the two frames. Ideally, only
[2]. We now consider a similar realization utilizing the those neurons associated with valid connections will beHopfield net and a quadratic energy function that leads active, while all others are driven to zero by minimiza-

Hopfeldnetand qudraic eerg fuctio tht lads tion of an appropriate neural energy function. One such

to a simpler optical implementation. These solutions are

preferable to other multitarget tracking neural nets that energy function is given by

require one neuron per image pixel [3]. E(X) = C1 , E XijDi + C2 E(Ei x - 1)2

ii

Sj i+C3 -( ~ 1)2 ()

Neural Energy Function 
j

This is a quadratic neural energy equation which, when
The problem is to track multiple targets over two con- minimized, will determine the best measurement assign-
secutive time frames. The position and velocity vectors ments. The coefficients were C1 = C2 = C3 = I in this
of each target are assumed known via real-time measure- case, but in general can be varied to weight the terms
ments. It is further assumed that there is a one-to-one differently. Each term will now be explained.
correspondence between the number of measurements The bias term Dj is derived from the position and ve-
and the number of targets in each time frame. That locity measurements in both time frames. Let #IP be the
is, a given position and velocity vector pair is due to no first measured position vector in the first time frame, and
more than one target, and a given target will produce A512 be the first measured position vector in the second

I



time frame. Also let the corresponding measured veloc-
ity vectors be represented by V11 and 12 respectively.
The D11 term is then Matrix-Vector Formulation

Dil = A[[/611 - J12112 + BV 1u - 11211[2 (2) The doubly-subscripted neurons Xij can be thought of

as elements of a matrix, with i as the row index and j

While the multiplicative coefficients A and B may in gen- as the column index. Each position in the matrix then

eral be different, they were made equal to give the posi- represents a unique connection between measurements in

tion and velocity measurements equal weight. The Dij the two time frames. The bias terms Dij can be thought

term is a measure of the difference in the position and ve- of in a similar manner. This representation is conve-

locity of the ith measurement in the first time frame and nient for verifying convergence, as the criteria of one-

the jth measurement in the second time frame. Likewise to-one correspondence is equivalent to having only one

the Xii neuron corresponds to the connection between maximum neuron value per row and per column. The

the ith and jth measurements. The first term in (1) indices of each maximum (i and j) yield the desired inter-

thus serves to weaken the neurons which correspond to connection information between the time frames. How-

the largest (magnitude) changes in position and velocity, ever, actual implementation of the network is far easier

The last two terms in (1) are equally weighted, therefore if the X and D values are described as elements of one-

the relative weights of the first term and the last two can dimensional matrices, or vectors, with elements -Xi and

be adjusted by the choice of A and B in (1). Di. Specifically, the first N elements of the X-vector are

The last two terms in (1) enforce the condition of one- the X1, terms, the next N elements are the X2 terms,

to-one correspondence between measurements in the two etc. , assuming there are N measurements in each time

frames. For every measurement i in the first frame there frame; a similar column vector is used for the Dij terms.

is no more than one corresponding measurement in the Using the vector format, we implement the neural net-

second frame, and for every measurement j in the second work in (4) by a matrix-vector multiplication and a vec-
tor addition,

frame there is no more than one corresponding measure-

ment in the first frame. This still allows the absence of Axi = 77(F MidX + D,). (5)
a corresponding measurement or more measurements in
one frame than the other, in which case all neurons as-
sociated with the "extra" measurement will be driven to The weight matrix M in (5) combines the two summa-
zero. This accomodates the scenario where a target just tions in (4), as we now detail by considering the Xk1
enters or leaves the field of view during one of the time terms in (4). For a given k, the first summation in (4)
frames. The final X solution should ideally have only is the sum of the elements contained in row k of the X
N ones in it, where N is the minimum of the number of matrix. Likewise, for a given 1, the second summation is
measurements in each of the two frames. the sum of all elements in column 1 of the matrix. Now

In the Hopfield neural net model, the time evolution consider the matrix-vector product of M and kX. Both
of the neurons from discrete time step t = n to t = n + 1 summations are satisfied for the case of 9 neurons by
can be given by 4 2 2 2 0 0 2 0 0

Xkl(n+l)=Xk(n)- 1AXkl (3) 2 4 2 0 2 0 0 20

where n is the discrete time index and it is the step size. 2 0 0 4 2 2 2 0 0

From the derivative of (1), then M 0 2 0 2 4 2 0 2 0 (6)
002224002OE(X)=D+2(X l) 2 0 2 0 4 2
0 2 0 0 2 0 2 4 2

J 002002224
+2(E-- Xil - 1) (4)

+ 1where the factor of 2 in each summation in (4) has been

included in M. In general this same block structure can
where subscripts k and I have been introduced for clarity, be extended to accomodate more targets, where there
Each neuron value is updated by iteratively subtracting are N = 3 targets and N2 neurons in the above example.
AXkl from each XkI until the net converges to a solution. For the case of an unequal number of measurements (N1

2
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Figure 1: Optical implementation.

measurements in the first frame and N2 measurements
in the second), the same block matrix structure of M
is retained, with each block matrix being N2 x N2 , and Simulation Results
with NI block matrices in each row and column of M.

The -2 terms in each summation are combined with One of the more difficult scenarios for multitarget track-

DA to give ing involves multiple crossing targets. A set of six cross-
ing targets (denoted by A to F) with 3-D position and

bi = 5i - 4 (7) velocity vectors was created for use in simulation of
s ithe network. A total of five time frames (four pairs of

as in (5). Thus, (5) can be implemented as a matrix-simulations.
vector multiplier with an added bias vector D5,. This meurnt)wepocsdinhentaliuain.
lectds mtitse o th an optial impm eto as .shonin Fig. 2 shows the target positions in time frames 3 and 4.
lends itself to an optical implementation as shown in The target position vectors are shown projected onto the
Fig. 1. The neurons k are represented by a linear array three (x-y, x-z, y-z) major planes. Each of the six tar-
of laser diodes or a linear spatial light modulator in plane gets are represented by an arrow with the tail denoting
P1. The weight matrix M is the two-dimensional matrix the position in frame 3 and the head denoting the po-
in P2, which is fixed and can be stored on film. The bias sition in frame 4. The direction of the arrows indicates
vector b is produced by another array of laser diodes or the target velocity vector direction, and the length of
1-D spatial light modulator in P3. The summed result the arrow indicates the velocity vector magnitude. Tar-
is detected at P4 and fed back electronically to the P1 get A is moving in the x-y plane along the x-axis, and
array for the next iteration. A nonlinear function (of- thus its projection in the y-z plane is a point at the oin
ten referred to as the neuron function) is applied to the gin. Similarly, targets B and C are traveling along the
P4 output in Fig. 1 to keep the -ki values between zero gin arly rets Band t aer along tand one. The nonlinear function we used is the sigmoid y and z axes respectively (and thus appear as points at
function the origin in the x-z and x-y planes respectively). All

functio ( six targets cross at the origin at different times between
Xi = 0.5(1 + tanh -!!), time frames 3 and 4.

0 Fig. 3 shows the x-y projections of the targets at time

where the ui are the detected values at P4 and u0 is a frames 3, 4 and 5. Each target is denoted by a separate
parameter which determines the slope of the function, or symbol with its position in time frame 3 denoted by the
the degree of "binarization", of the neurons, symbol labeled with a letter. For example, target A
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Figure 2: 2-D projections of 3-D position vectors for the targets in our scenario.
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Figure 3: Time sequence of target positions (projected F- F I M
in the x-y plane) for three successive time frames.

50 iterations 70 iterations

moves right to left along the x-axis as shown. Target C Figure 4: Convergence of neuron values.

travels in the negative z direction (into the page) and
thus appears as a point at the origin in all three time and j = frame 4 (horizontal) with the six measurements
frames. The arrows indicate velocity vector direction. per frame assigned randomly. The size of the darkened
The scale of the axes in Fig. 3 differs from Fig. 2, in squares indicates the neuron value, with a clear square
order to allow inclusion of all targets over the three time denoting a value of zero, and a fully darkened square
frames. denoting a value of one. The initial (iteration 0) neu-

The simulation of our algorithm was performed on a ron values are too small to be resolved in the figure,
Hecht-Nielsen neurocomputer system using Anza Plus since the maximum random variance is small. Succes-
neurosoftware. This system allows direct implementa- sive iterations lead to the final stable pattern shown at
tion of the Hopfield neural network and other major iteration 70 for a single pair of time frames. This final
neural net models. The bias vector b and the weight Xi, pattern illustrates the interconnection assignments
matrix M were computed offline and loaded into the of corresponding measurements in the two frames. (The
neurocomputer. A new vector b is used for each pair indices associated with targets A to F in the two frames
of frames, while the weight matrix M remains the same are shown in this final matrix). A single one is present
for all pairs of frames. The network iterated until the in each row and column, and they correctly associate the
neuron values converged (equal to within .01 for at least targets in the two frames. The smallest "true" neuron
two consecutive iterations). The initial neuron states activity level was 0.924 and the largest "false" level was
were randomized using a uniform zero-mean distribution 0.01 (thus allowing easy thresholding).
with a maximum value of ±0.0003. Prior to randomiza- Simulations were run for two different sequences of six
tion the initial neuron states were all set equal to 1/36 so targets. Case 2 was the scenario illustrated in Figs. 2-
that the sum of the N 2 = 36 neurons was equal to one. 3. Case 1 is a less complicated crossing scenario (with
Ten different initial neuron vectors were used for each only two or three targets crossing at any one time). To
of the four pairs of time frames. (The iteration data simulate realistic cases, random noise was added to the
were averaged over the ten runs, and negligible differ- measured position and velocity vectors in (2) for each
ences were obtained). A graphical representation of the target in frames 2 to 5. This measurement noise was
neuron states Xi, in the two-dimensional matrix format uniformly distributed with zero mean and a maximum
is shown at four iteration steps in Fig. 4 for time frames percent error in any measured position or velocity com-
3 and 4. The indices in Fig. 4 are i = frame 3 (vertical) ponent of 0%, 5% and 10%. The average number of it-
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erations required (over the four pairs of time frames and
ten initial neuron vectors) for the different amounts of
measurement noise in the two cases are shown in Fig. 5.
As expected, the simpler case 1 scenario requires fewer

4o co 2 -- iterations. The number of iterations required for any
* pair of frames ranged from 15 to 40 for case 1 and from
o. 20 to 70 for case 2 (with the largest number of iterations,

70 as in Fig. 4., corresponding to the time frame when
-35 all six targets crossed with the maximum 10% measure-

ment error present). The results show that even in the
presence of measurement errors, the neural net was very

E robust and did not require a significant increase in the
C3o case average number of iterations (i. e. 26 to 30 iterations for
* case 1 and 37 to 40 iterations for case 2). In all cases,
* the network converged to the correct solution for all six

25 . .targets in each of the time frames.
0 2 4 6 8 10 The network parameters used were r? = 0.3 and

max. percent measurement error u0 = 0.2 in all runs. A graph of the neuron function
for uO = 0.2 is shown in Fig. 6. No intensive effort was
made to optimize these parameters. This merits future

Figure 5: Iterations vs. measurement error, work. For example, the neuron increment in (4) is lin-
ear in Xi,, and for this case techniques for choosing Y1
exist [4]. Extending these to piecewise-linear cases may
be possible. Smaller uO values increase the "binariza-
tion" of the neuron values and increase the probability
of convergence to relatively shallow local minima rather
than the correct global minimum. Larger uO values make
thresholding of the outputs more difficult. The uO = 0.2
value used is a compromise between these effects.

1.0- The A and B parameters in (2) used to determine the
bias vector were equal and constant for each case. We
used A = B = 0.01 for all time frames in case 1, and A =

0.8 B = 0.025 for case 2. Larger values for these parameters
weight the bias term (due to the position and velocity

0.6 vectors) more than the one-to-one correspondence terms
6in the energy function. For case 2, the larger A and

0. B values were used to improve the rate at which the
c 0.4 network converged. (Larger values also increased the
c probability of an incorrect solution). The values used

0.2 are not optimized in these initial tests.

0.0-
-1 01

Conclusion
neuron Input

A Hopfield neural net using a quadratic cost function was
successfully used to solve the multitarget tracking prob-

Figure 6: Neuron function for u0 = 0.2. lem over pairs of consecutive time frames using 3-D tar-
get trajectories. This network can be implemented with
a simple optical architecture to achieve real-time process-
ing for large numbers of targets, with convergence in rel-
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atively few iterations (15-70). With optimization, faster
convergence times are expected. The network proved
to be robust, converging successfully with measurement
errors of up to 10 percent.
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ABSTRACT

A symbolic neural net is described. It uses a multichannel symbolic correlator to produce input
neuron data to an optical neural net production system. It has use in obstacle avoidance, navigation,
and scene analysis applications. The shift-invariance and ability to handle multiple objects are novel
aspects of this symbolic neural net. Initial simulated data are provided and symbolic optical filter
banks are discussed. The neural net production system is described. A parallel and iterative set of
rules and results for our case study are presented. Its adaptive learning aspects are noted.

1. NTRODUCTION

Figure 1 shows an overview of the symbolic neural net. A multichannel correlator (Section 2)
analyzes the Input scene. It is unique since it can handle multiple objects. It provides a symbolic
description of the input scene. This Is converted to a position encoded input neuron description that
Indicates what basic elements are present In each region of the scene (Section 3). This is a new
neuron representation space. No prior neural net can accommodate multiple objects in the field of
view (FOV). A neural net production system (Section 4) then determines the contents of each spatial
region of the scene. Sections 5 and 6 present Initial simulation data using this system.

INPUT SYMBOLIC (A SYMBOLIC (B), PRDCTO SYSTE
-1CORRELATOR ENCODING SYTE

SCENE NEURAL NET

FIGURE 1. Optical symbolic neural net.

2. SYMBOLIC CORRELATOR
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Figure 2 shows a 4-channel optical symbolic correlator [1]. P1 contains the input scene, 4
frequency-multiplexed filters are placed at P2 and 4 spatially separated correlation planes appear at
P3. Each correlation plane contains peaks at the locations in P1 of the 4 different filter patterns used
at P2 (thus shift invariance exists and multiple objects in the FOV can be handled). Only correlators
provide this capacity in parallel. The 4 correlation plane patterns are read off point-by-point in
parallel from top left to bottom right. A segmented CCD can achieve this. 7,0 output is a 4-digit
symbolic word that describes the P2 filters' response for each spatial region of the scene at P1. With

4 binary encoded P2 filters (correlation peak values of 1 and 0), we can describe 24 = 16 objects.

With F filters and L correlation peak levels, we can encode LF = 104 = 10,00n rlasses (this is an
enormous potential). Multi-level encoding and distortion-invariant filters dre possible and have been
previously advanced [2]. Our production system neural net (Section 4) analyzes these symbolic
outputs (for each spatial region) and thus we achieve the first shift-invariant multiple object neural
net. Shift-invariance is achieved by use of a correlator. High capacity is achieved by symbolic
encoding. Distortion-invariance is achieved by the use of synthetic discriminant function (SDF) [2]
filters. Extensions to F > 4 filters (digits) are possible.

P1 Li P2 L2 P3

Input Multiple Output
frequency- correlation
multiplexed planes
filters

FIGURE 2. Frequency-multiplexed optical symbolic correlator for
neural net representation generation.

3. NEURON REPRESENTATION

We show the four time sequential raster outputs from the 4 correlation planes (Figure 2) by F1 to
F4 In Figure 3. These are our 4-digit descriptions of each P1 region. Our symbolic encoding system
converts this into our position-encoded neuron description for input to our production system neural
net as shown conceptually in Figure 4. In the specific input neuron representation we consider, each
Input neuron to our production system is position encoded to represent a generic object part.

4. NEURAL NET PRODUCTION SYSTEM CONCEPT

A production system consists of IF-THEN statements. Its realization Is possible via a neural net or
a symbolic substitution system [3]. Here, we consider its neural net realization. For our present
problem, such a rule-based system is necessary to determine the input present at each spatial region
of P1 from the 4-digit symbolic data of Figure 3 position-encoded as in Figure 4. We describe this
concept by example. Figure 5 shows a simple set of 4 rules with antecedents on the left and
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F1 --

F2
4-digit symbolic description of each spatial region of P1 scene

F3--

F4

FIGURE 3. Symbolic F1 to F4 encoding from Figure 2 correlator.

FROM F1 - - REF 1 PATTERN INPUT P1
4 SYMBOLIC F2-- ENCODING * PROD
CORRELATOR F3 - SYS
OUTPUTS F4-- -- REF 24=16 PATTERN NEURONS

FIGURE 4. Neuron representation (position encoding) of symbolic
optical correlator F1 to F4 outputs.

consequents on the right. We write all rules as IF-THEN statements. We allow the AND of various
antecedents and we allow (Figure 6) the OR of several such sets of antecedents. The antecedents
(an) are facts known to be true. The output consequents (cn) are new true facts. If we denote each
fact (antecedent or consequent) by a neuron In a specific position (location), then the rules can be
described as weighted combinations of input neurons (true facts are input or output neurons that are
active "1" and false facts are neurons with activation "0"). Figure 7 shows the neural net that realizes
the rules in Figure 5. Figure 8 shows a standard optical matrix-vector multiplier that realizes the
production system neural net of Figure 7. The input facts (neurons) are represented by activated
point modulators at P1 (LEDs, laser diodes, etc.). The weights (rules) are the elements of an
interconnection matrix at P2 and the output (antecendents) facts are activated detector elements at
P3. The P2 weights or P3 thresholds are adjusted to produce proper outputs [3]. The diagonal
elements at P2 are one so that input facts remain true. New rules not present in the original rule base
can be Inferred and operation on facts with various degrees of confidence are possible as we have
detailed [3].

5. SIMULATION RESULTS

For obstacle avoidance applications, we require only the relative size of the objects (bolders etc.)
In each spatial region of P1. For navigation, we must identify what exists in each P1 region and relate
it to a global map of the scene. For general scene analysis, we desire to know what is present (object
name) in each region of P1.
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a w-dC aM f -ega5aa

f and g- C Ci c2 c3

FIGURES5. Simple if -then production rules. FIGURE 6. Production system with the OR
of several paths to the same consequent cn.

outputs (conttrol signals or just feedback)

inputs (from sensors. corretlors or feedback)

FIGURE 7. Neural not for the rules in Figure 5.

P 1 Li1 P2 L2 P3

output

oo 00 ,electronic

input 0 ner hresholding
neurons connectons and

feedback

FIGURE 8. Optical neural net.
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5.1 Database

To demonstrate all aspects of such a neural net, we consider a database consisting of 9 objects
(Figure 9) with 2 objects shown enlarged for clarity. We used a synthavision solid model description
in which each object consists of basic general shapes or parts. Figure 10 shows the 12 object parts
we consider. Thus, the version of the general problem that we address is the location and recognition
of each object part in the input scene and the subsequent identification of what object is present from
this object part information. We use an optical correlator (Figure 2) to locate the object parts present
and we use an optical neural net production system (Figure 8) to determine what object is present.
Table 1 lists the 9 objects we consider. Table 2 lists the parts we used to synthesize each. Table 3
lists the 3 clusters into which we grouped these objects. Table 4 lists the parts we use within each
cluster to uniquely describe the objects within that cluster.

We formed SDF filters for each object part. To test the invariance of these filters, we formed 3
and 4 distorted versions of each object and of each object part. These images corresponded to 00,
30*, 60* and 90* (or variations thereof as noted) rotated aspect versions of the original (Figures 9
and 10) objects and parts. We formed projection SDFs 12] from the 4 different aspect views of each
object part and tested each such filter against the test set of distorted objects.

5.2 Distortion -invariant Part Recognition

The results in Tables 5-7 show that the object parts within each cluster can adequately
discriminate the object parts used and that they can be recognized invariant to distortions. The
underlined entries in these tables of data denote the object parts denoted as being present in the
object Indicated under test (with proper thresholds used). These results show that the correlation
filters (one per part) can identify all tested object parts independent of position and distortion. The
"tank" object was a poor choice and was not used.

6. NEURAL NET PRODUCTION SYSTEM

We used the results of Section 5 for our parts list and our object tests, and our production system
concept (Section 4) to devise a parallel (Figure 11) and an iterative (Figure 12) neural net production
system design. We tested these neural net production systems on our database with successful
results.

Summary

In this paper we have unified our prior symbolic correlator [1] and production system [3] neural
net work into a symbolic neural net. It provides the ability to handle multiple objects in the field of
view. It is shift-invariant, distortion-invariant and has the potential for high capacity. Initial simulation
results were presented.
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Cfire fire hydrant Cfence = fence

C = street lamp Ctlight traffic light csign  street sign

Ctuck , truck Cmotorc - motor cycle big motor cycle (to provide detail)

Chouse - house Ccar = car big car (to provide detail)

FIGURE 9. The 9 objects (and scaled versions of 2) in our initial production system.
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ahba - horizontal bar asfpost - short fat post adome ' top dome (fire hydrant)

apost - long thin post aname ' name plate (street sign) atbox - box (traffic light)

alight - light (street lamp) awheel - wheel abigbod - big body (house, truck)

acarbod = car body aroof = roof atank = gas tank (motor cycle)

FIGURE 10. The 12 parts used to describe as facts the multiple objects (Figure 9) in our database.
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Cfjr e = fire hydrant Cfence = fence cM p = street lamp

Ctlight = traffic light Cegn = street sign Ccar = car

Ctruck = truck Chouse = house Cmotorc = motor cycle

TABLE 1: Database of 9 Objects

Fire hydrant: short fat post, dome on top, 3 arms
Fence: 3 short fat posts, 2 horizontal bars
Traffic light: long thin post, box, 3 lights
Street lamp: long thin post, light, dome on top
Street sign: long thin post, rectangular name plate
Motor cycle: 2 wheels, engine, gas tank, seat, pipes
Car: car body, 4 wheels, wedge shaped car top
Truck: big square body, 8 wheels, cabin
House: big square body, wedge shaped roof

TABLE 2: Components Used to Construct Objects

CLUSTER 1: SHORT OBJECTS (fire hydrant, fence)
CLUSTER 2: TALL OBJECTS (traffic light, street sign and lamp)
CLUSTER 3: BIG OBJECTS (motor cycle, car, house and truck)

TABLE 3: Multiple Object Clusters Used for First Separation of Objects

CLUSTER-I PARTS: short fat post, dome, horizontal bar
CLUSTER-2 PARTS: long thin post, box, light, rectangular name plate
CLUSTER-3 PARTS: gas tank, car body, wheel, big body, wedge shaped roof

TABLE 4: Symbolic Parts for each Object Cluster

Acknowledgment
We gratefully acknowledge the support of the Defense Advanced Research Projects Agency

monitored by the U.S. Army Missile Command.
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fence 0 fence 30 fence 60 fence 90 fire 0 fire 30 fire 60 fire 90

hbar 1.195 1.184 1.130 0.808 0.823 0.687 0.620 0.738
dome 0.634 0.678 0.661 0.492 0.885 0.885 0.885 0.885
sfpost 0.742 0.742 0.737 0.871 0.892 0.868 0.858 0.946

TABLE 5: Cluster 1 Cross Correlation Data

lamp tlight 0 tlight 20 tlight 40 tlight 60 sign 0 sign 20 sign 40 sign 60

light 1.000 0.386 0.514 0.475 0.402 0.440 0.423 0.394 0.386
tbox 0.692 1.063 1.049 1.046 0.903 0.682 0.679 0.686 0.682
name 0.747 0.624 0.704 0.670 0.613 0.995 1.008 1.069 1.106
post 0.683 1.000 0.989 0.989 0.989 0.667 0.6.67 0.667 0.667

TABLE 6: Cluster 2 Cross Correlation Data

car 0 car 30 car 60 house 0 house 30 house 60

bigbod 0.355 0.374 0.312 1.177 0.981 1.063
carbod 1.097 1.085 1.020 0.622 0.578 0.625
roof 0.306 0.305 0.289 1.032 1.002 1.034
tank 0.981 1.000 0.944 0.611 0.667 0.722
wheel 1.829 1.868 1.485 0.780 0.778 0.793

motorc 0 motorc 30 motorc 60 truck 0 truck 30 truck 60

bigbod 0.232 0.222 0.179 1.047 1.070 0.872
carbod 0.927 0.720 0.655 0.750 0.731 0.695
roof 0.240 0.241 0.212 0.564 0.521 0.462
tank 1.000 1.000 1.000 1.000 1.000 1.000
wheel 1.962 1.995 1.943 1.827 1.810 1.586

TABLE 7: Cluster 3 Cross Correlation Data
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SFPOST
DOWMER

HBARF

IF aafpost AND adome THEN Cfir€  POST

IF sfpt AND ahbar THEN Clerice  *fl* LAMP

IF apst AND alight THEN Clamp NAME SN ST

IF apost AND aname TIIEN cign  TBOX RIGHTIF apost AND atbox T sEN ctight

IF awheel(s) AND atank TIIEN cmotrc TANK

IF awheel(s) AND acarbod THEN Cca r

IF awheel(s) AND abigbod  THEN Ctruck  BIG80 T

IF aroof AND abigbod THEN Chouse ROOF HOUSE

(a) (b)

Figure 1 1. Rule base (a) and neural net (b) for a parallel production system.

aUPOST J S=

IF fpo, THEN Cfire or fence DKME

IF afire or fence AND adon TIIEN cre B

IF *fire or fence AND ahbar TIIEN Cfence POST

IF THEN Clamp , sign or thight UTLAM

IF 'lamp, sign or dight AND alight THEN Clamp max

IF alamp, sign or ight AND a THEN cuight MOkE

IF aAND a tbx THENclamp, sign or tight name T ign
IF 5h~ loeTENFortuc MELS FAR APART M~~/u

IF aWheel, far apart THEN c t or truck Vicm FARmPAR

IF %igbo d  THEN hoose or truck

IF amotorc or truck AND igbo d  THEN Ctruck CRAU

IF a moorc or truck AND aank THEN c mtorc =W
IF aew or truck AND acarbod THEN etar

IF aboustair truck AND aroof THEN ch.RM

(a) (b)

Figure 12. Rule base (a) and neural net (b) for an Iterative production system.
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ABSTRACT

An optical symbolic neural net is described. It uses an optical symbolic correlator. This produces

a new input neuron representation space that is shift-invariant and can accommodate multiple

objects. No other neural net can handle multiple objects within the field of view. Initial optical

laboratory data are presented. An optical neural net production system processes this new neuron

data. This aspect of the system is briefly described.

1. INTRODUCTION

Figure 1 shows an overview of the symbolic neural net. A multichannel correlator (Section 2)

analyzes the input scene. It is unique since it can handle multiple objects. It provides a symbolic

description of the input scene. This is converted to a position encoded input neuron description that

indicates what basic elcments are present in each region of the scene (Section 3). This is a new

neuron representation space. No prior neural net can accommodate multiple objects in the field of

view (FOV). A neural net production system (Section 4) then determines the contents of each spatial

region of the scene. Sections 5 and 6 present initial optical data using this system.

INPUT SYMBOLIC (A SYMBOLIC (B) SYSTEM
S~ ! CORRELATOR I ENCODING NSUSTLE

SCENENEURAL NET

FIGURE 1. Optical symbolic neural net.

2. SYMBOLIC CORRELATOR

Figure 2 shows a 4-channel optical symbolic correlator [1]. P1 contains the input scene, 4

frequency-multiplexed filters are placed at P2 and 4 spatially separated correlation planes appear at

P3. Each correlation plane contains peaks at the locations in P1 of the 4 different filter patterns used



at P2 (thus shift invariance exists and multiple objects in the FOV can be handled). Only correlators
provide this capacity in parallel. The 4 correlation plane patterns are read off point-by-point in
parallel from top left to bottom right. A segmented CCD can achieve this. The output is a 4-digit
symbolic word that describes the P2 filters' response for each spatial region of the scene at P1. With
4 binary encoded P2 filters (correlation peak values of 1 and 0), we can describe 2 = 16 objects.
With F filters and L correlation peak levels, we can encode LF = 104 = 10,000 classes (this is an
enormous potential). Multi-level encoding and distortion-invariant filters are possible and have been
previously advanced [2]. Our production system neural net (Section 4) analyzes these symbolic
outputs (for each spatial region) and thus we achieve the first shift-invariant multiple object neural
net. Shift-invariance is achieved by use of a correlator. High capacity is achieved by symbolic
encoding. Distortion-invariance is achieved by the use of synthetic discriminant function (SDF) [2]
filters. Extensions to F > 4 filters (digits) are possible. Section 4 provides initial optical laboratory
results obtained with single and multiplexed filters.

P1 L1 P2 L2 P30 .0
Input Multiple output

frequency- correlation
multiplexed planes
filters

FIGURE 2. Frequency-multiplexed optical symbolic correlator for
neural net representation generation.

3. NEURON REPRESENTATION

We denote the time sequential raster outputs from the 4 correlation planes (Figure 2) by F1 to F4
in Figure 3. These are our 4-digit descriptions of each P1 region. They are obtained in parallel for
each P1 region. Our symbolic encoding system converts this into our position-encoded neuron
description for input to our production system neural net as shown conceptually in Figure 4. In the
specific input neuron representation we consider, each input neuron to our production system is
position encoded to represent a generic object part.

4. NEURAL NET PRODUCTION SYSTEM CONCEPT

A production system consists of IF-THEN statements. Its realization is possible via a neural net or
a symbolic substitution system [3]. Here, we consider its neural net realization. For our present
problem, such a rule-based system is necessary to determine the input present at each spatial region
of P1 from the 4-digit symbolic data of Figure 3 position-encoded as in Figure 4. We describe this
concept by example. Figure 5 shows a simple set of 4 rules with antecedents on the left and
consequents on the right. We write all rules as IF-THEN statements. We allow the AND of various



F1 -.

F2 -. 4-digit symbolic description of each spatial region of P1 scene

F3

F4 -b

FIGURE 3. Symbolic F1 to F4 encoding from Figure 2 correlator.

FROM F1 -- - REF 1 PATTERN INPUT P1
4 SYMBOLIC F2 - ENCODING * PROD
CORRELATOR F3 - SYS

OUTPUTS F4 - -- REF 24= 16PATTERN NEURONS

FIGURE 4. Neuron representation (position encoding) of symbolic
optical correlator F1 to F4 outputs.

antecedents and we allow (Figure 6) the OR of several such sets of antecedents. The antecedents
(an) are facts known to be true. The output consequents (cn) are new true facts. If we denote each
fact (antecedent or consequent) by a neuron in a specific position (location), then the rules can be
described as weighted combinations of input neurons (true facts are input or output neurons that are
active "1" and false facts are neurons with activation "0"). Figure 7 shows the neural net that realizes
the rules in Figure 5. Figure 8 shows a standard optical matrix-vector multiplier that realizes the
production system neural net of Figure 7. The input facts (neurons) are represented by activated
point modulators at P1 (LEDs, laser diodes, etc.). The weights (rules) are the elements of an
interconnection matrix at P2 and the output (antecendents) facts are activated detector elements at
P3. The P2 weights or P3 thresholds are adjusted to produce proper outputs [3]. The diagonal
elements at P2 are one so that input facts remain true. New rules not present in the original rule base
can be inferred and operation on facts with various degrees of confidence are possible as we have
detailed [3].

5. OPTICAL LABORATORY RESULTS

For obstacle avoidance applications, we require only the relative size of the objects (bolders etc.)
in each spatial region of P1. For navigation, we must identify what exists in each P1 region and relate
it to a global map of the scene. For general scene analysis, we desire to know what Is present (object
name) in each region of P1.

5.1 Database

To demonstrate this concept, we considered a database of 9 objects (Table 1). Each was
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FIGURE 5. Simple if -then production rules. FIGURE 6. Production system with the OR
of several paths to the same consequent cn.
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FIGURE 7. Neural net for the rules In Figure 5.
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FIGURSE 8. Optical neural net.



produced from generic shapes (object parts) using a Synthavision system including lighting and
illumination effects. We divided the 9 objects into 3 clusters (Table 2) with various generic shapes
(object parts) comprising each (Table 3). For each object and each of the 12 generic shapes, we
generated from 3 to 5 different aspect views. Distortion-invariant projection SDF filters [2] were
formed for each of the 12 shapes and tested against the distorted objects to verify that we could
recognize each of the 12 shapes independent of distortions. The shapes within the test objects
differed from those from which the filters were formed due to shading and illumination, edge
thicknesses, and occlusion (e.g. the rods and posts on the fences, the wheels on the vehicles, etc.).
Initial simulation results [4] were successful. In simulation tests, we showed success in recognizing
distorted parts and discriminating between parts in objects. We now consider optical laboratory
results obtained with a correlator.

Cfire = fire hydrant Cfenc e = fence Clamp = street lamp

Cflight = traffic light csg n = street sign Cca r = car

Ctruck = truck Chous e = house Cmotorc z motor cycle

TABLE 1: Database of 9 Objects

CLUSTER 1: SHORT OBJECTS (fire hydrant, fence)
CLUSTER 2: TALL OBJECTS (traffic light, street sign and lamp)
CLUSTER 3: BIG OBJECTS (motor cycle, car, house and truck)

TABLE 2: Multiple Object Clusters Used for First Separation of Objects

CLUSTER-1 PARTS: short fat post, dome, horizontal bar
CLUSTER-2 PARTS: long thin post, box, light, rectangular name plate
CLUSTER-3 PARTS: gas tank, car body, wheel, big body, wedge shaped roof

TABLE 3: Symbolic Parts for each Object Cluster

5.2 Filter Synthesis and Testing

Projection SDFs [2] were formed with no false class training images used and with true class
peaks set to 1.0. When a part was aspect view symmetric (e.g. the short fat post, the dome, the post
and light), only one training image was used (otherwise the matrix used in synthesis is singular). For
objects with more than one occurrence of one part, only one was used. The parts used were isolated
and one fixed illumination was used for all aspect views of it. A 3x3 Sobel was used to edge
enhance the data, which was then binarized to produce edges thicker than 2 pixels. In tests, different
illuminations and edge widths plus occlusions occurred and when multiple parts are present in an



object, each has a different shape and edge width. In addition, in training the parts are rotated about

their geometric center, while in testing the objects are rotated about a different point. Thus,
considerable differences exist in the training and test data.

5.3 Advanced Considerations

When multiple parts are present in an object, the number of parts and their locations are useful
features. All such parts cannot be located without reducing the threshold and allowing false alarms.
The NN could possibly solve such problems. Increasing the number of training images to include the
different versions of a part in each object would help, so would including false class training images.
Another issue is the presence of several correlation peaks above threshold around a central peak
(due to the various lines in the parts and object. Blob coloring allows us to select only the true
central peak and will aid in locating multiple parts.

5.4 Resolution

We reduced the resolution for the street lamp and traffic light objects and the light part (in the
street lamp) and the tbox part (in the traffic light) from 256x256 down to 32x32. Table 4 lists the
autocorrelation peak (it is underlined) for the different inputs (horizontal) with the 2 different filters
(vertical). All intra-image peaks (within the same true correlation plane with the part present in the
object) were less than the autocorrelation peak value. The largest inter-image crosscorrelation peak
value is given in the table (this is the largest peak anywhere when the input object does not contain
the part). Table 4 shows PC = 100% discrimination is possible with 64x64 resolution. The minimum
true peak values remain about the same as resolution decreases, while the maximum false peak value
Increases. This is expected, since with reduced resolution objects look more similar and we expect
both true and false peaks to tend to the same value.

5.5 Filter Quantization

We also quantized the number of amplitude levels in the image version of the filer. This is a
practical issue in an optical realization. Table 5 shows selected results. No significant degradation in
true or false peak values occurred down to 8 levels. The auto and crosscorrelation peak values with
MSFs of the light and post are not affected as they use only one binary training image. As few as 4
levels can thus be used in encoding the filters.

5.6 Optical Laboratory Single Filters

All optical laboratory tests used a standard VanderLugt correlator with film input and the MSFs
recorded on an NRC thermoplastic camera. The input FT lens L, had fL = 495 mm, the FT lens L2 had fL
: 400 mm and the correlation was determined with a camera. The reference beam angle used was 6 =
30*, corresponding to a spatial frequency a = (sin9)/.\ z 8x 106 cy/cm with He-Ne light (the center of
the thermoplastic camera's bandpass response). The bias exposure for the thermoplastic camera
was 20pMJ. The K ratio was 4-10 measured over the full reference-to-signal beams.
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TABLE 4: Cluster 2 auto- and inter-image TABLE 5: Cluster 2 auto- and inter-image
correlation peak values in spatial resolution correlation peak values in amplitude

experiments. quantization experiments.

Table 6 shows optical laboratory results obtained for different SDF filters versus different input
objects. The true peak values are for autocorrelation peaks. The largest false peak value anywhere
is listed when a false class input is present. Tests (a) show that the post can be determined in all
traffic light inputs. The post is also present in the sign and lamp objects and its peak values with
these inputs are similar. The tbox in test (b) is only present in the tlight. It is recognized in all tlight
inputs. It is not present in the sign and lamp objects and these peaks are all below the lowest true
peak. Tests (c) and (d) show that multiple parts can also be recognized (in some object views, where
expected).

Figure 9 shows various laboratory results. In Figure 9a, the input was the 0 light and the post
filter was used. The 3 correlation peaks for the sfpost filter and the 0" fence are shown (Figure 9b)
as are the four correlation peaks of the wheel and the 0" truck. The values in parentheses indicate
the peak value (or their range for the case when multiple parts are present).

5.7 Optical Laboratory Frequency-Multiplexed Filter Tests

A frequency-multiplexed optical laboratory system was assembled. Four frequency-multiplexed
SDFs were fabricated. Figure 10 shows the images of the 4 SDFs (two use only one reference
pattern). These 4 SDFs were placed side-by-side in the input with 4 mm between each. The full input



(a) POST FILTER (b) TBOX FILTER

INPUT TRUE TRUE TRUE FALSE LARGEST
PEAK INPUT PEAK INPUTS PEAK

tlight 0 121 tlight 0 237 Sign 0 115
tlight 20" 148 tlight 20 227 Sign 20' 120
tlight 40" 109 tlight 40 160 Sign 40* 143
tlight 60 102 tlight 60* 158 Sign 60* 120

Lamp 155

(c) SF-POST FILTER (d) WHEEL FILTER
vs. 0' FENCE INPUT vs. 0 TRUCK INPUT

POST TRUE WHEEL TRUE
PEAK PEAK

1 111 1 234
2 96 2 255
3 103 3 216

4 197

TABLE 6: Single Filter Optical Laboratory Test Results

was 14 mm wide. The frequency-multiplexed filter was formed with one exposure of this input. The
output contains 4 correlation planes (left to right) of the input test object with filters of the post, tbox,
light and name plate respectively. Figure 11 shows typical results obtained with 3 different test
inputs.

5.8 Optical Laboratory CGH Results

Optical filters were also synthesized with a new CGH encoding technique [5]. The results are
summarized in Table 7. The light part is present only in the lamp and the tbox part is present only in
the tlight. They show much better agreement with simulations, since the CGH encoding used is very
accurate.



(a) Correlation of the 0 (b) Three correlation peaks for sfpost
tlight and post (121 ) and 0 * fence (96-111)

'c) Four correlation peaks for wheel
and 0 truck (197-234)

FIGURE 9. Optical outputs of single filters.

RGURE 10. Multiple filter images for frequency-multiplexed filters.



EI.!
(a) flight input (contains post and tbox)

(b) lamp input (contains post and light)

(c) sign input (contains post and name plate)

FIGURE 1 1. Optical outputs of frequency-multiplexed filters of (left to right)
the post, tbox, light, and name plate.



INPUT lamp 0' tlight 0' tlight 20' tlight 40 tlight 60' auto

light 64 41 51 41 51 64
filter

tbox 45 62 61.5 63 62 61
filter

TABLE 7: Optical Laboratory Results using New CGH Encoded Filters (64x 64 images).
The maximum false class peak anywhere and the true peak (underlined) are shown.

6. NEURAL NET PRODUCTION SYSTEM

We used the results of Section 5 for our parts list and our object tests, and our production system
concept (Section 4) to devise a parallel (Figure 12) and an iterative (Figure 13) neural net production
system design. We tested these neural net production systems on our database with successful
results.
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IF asfposf AND adome THEN Cfire  POST
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IF awhee(s) AND bigbod  THEN ctruck  BKGM TIF aref AND bigbod THEN chou_ _ HOUSE

(a) (b)

Figure 12. Rule base (a) and neural net (b) for a parallel production system.

MFPMT

IF %fpost THEN efi3 or fence FIRE
IF afire or encte ANi adon€ TiEN Cfire WAR FOC

IF ihre or ence AND ahlr TiHEN cfenc e L./W, SIGHTUG S N~flIr.

IF aTpost IhEN CLmp agn or tigSht IG1W!
IF alsmo. sip or u.iilt AND alisgl, THEN Chup sxig or tzizhfjfxuff
IF 4ap, sag or Uight AND atbo, THEN ctligbt
IFWAMP' sign or Uight AND an&mc THEN caign

pF a .saWoE LSrnomsg

IFheels close THEN c wowoc or truck WMEELS FAR APART
IF awe (arapa THEN cear or truck Baso
IF al 0od THEN Co.s or &ruk bOT0AC/JfLC

I a.o, or truck AND higbod THEN c uck CAR01MCT
IF mo4a - truck AND atank THEN c ot. €  MM'M
IFaIr or tk AND acarbod THEN c. TW

bse ao maruck AND af THEN c C _ _ _ _ _ _ _ _

(a) (b)
Figure 13. Rule base (a) and neural net (b) for an iterative production system.
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Optical production systems using neural networks and
symbolic substitution

Elizabeth Botha, David Casasent, and Etienne Barnard

Two optical implementations of production systems are advanced. The production systems operate on a
knowledge base where facts and rules are encoded as formulas in propositional calculus. The first implemen-
tation is a binary neural network. An analog neural network is used to include reasoning with uncertainties.
The second implementation uses a new optical symbolic substitution correlator. This implementation is
useful when a set of similar situations has to be handled in parallel on one processor.

I. Itoducton tions (the input vectors) and the consequents (output

Several attempts have been made to apply optics to vectors). This allows inferences to be made by a single
the field of symbolic computation. In one case' a matrix-vector multiplication followed by threshold-
hybrid optical and electronic architecture was pro- ing. Another similar expert or production system 5

posed to implement a subset of the language PROLOG. allows the knowledge base to be updated during learn-
The time-consuming parts of the PROLOG implemen- ing and uses the Bayes theorem to update the probabil-
tation are done optically, but extensive electronic con- ities of consequents and rules and again uses optical
trol is employed and multiplexed filters which we use matrix-vector multiplication to make inferences. We
were not employed. This system is query- or goal- find the assumptions of independent events or asser-
driven, while our production system is data-driven. tions (which allows multiplication of probabilities
This is not the general inference machine (production when using the Bayes decision theorem) and mutually
system) we consider, but serves as a coprocessor to a exclusive events (allowing the addition of probabili-
general-purpose electronic computer. An optical in- ties) unrealistic in the situations where these systems
ference machine has been suggested 2 in which differ- are used (such as in medical diagnosis and vehicle
ent situations are represented as adjacency matrices control).
(these concepts arise from directed graph theory) and In this paper we show how we can use optics to
inferences are made by Boolean matrix addition and implement a production system using two different
multiplication. This system can handle only the aim- approaches: the first employs an artificial neural net-
pleat case of Boolean logic, namely, a - b (a implies b) work structure and the second is based on symbolic
and its extension to handle subsequent inferences substitution. The neural network architecture em-
(which we consider) is not addressed. Architectures ployed is the well-known matrix-vector multiplication
to extend the storage capacity (the size of a fixed followed by a nonlinear function and feedback. Neu-
knowledge base) of such systems using multiple holo- ral network architectures have not explicitly been used
grams3 have been described. Another production sys- as iterative inference machines. However, Anderson6

tem4 calculates probabilities associated with different formulated an autoassociative memory in which each
inferences and assumes that the assertions in the of the inference rules (if-then-rules) is encoded as one
knowledge base are independent events and that a key/recall vector, with these vectors stored in an asso-
linear relationship (a matrix) exists between the asser- ciative memory using the conventional outer-product

formulation. When this system is presented with a
partial input vector (only the antecedent elements), it
iterates until the full vector is reconstructed (i.e., the

The authors are with Carnegie Mellon University, Department of consequent part is obtained). This system differs

Electrical & Computer Engineering, Center for Excellence in Opti- from ours, since it iterates to invoke one rule and no
cal Data Processing, Pittsburgh, Pennsylvania 15213. subsequent rules are examined. Thus, our use of a

Received 4 April 1988. matrix-vector neural network as an iterative inference
0003-35/88/245186-09802.00/0. engine is new. The matrix and vector can be parti-

S1N8 Optical Society of America. tioned into facts and rules for different nearly uncou-
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pled situations associated with a general problem. In system, without any fine discrimination between these
this sense, the system is modular. This aids learning, terms.
since the system need not know and thus make all We choose propositional calculus as the formalism
inferences in one pass through the system (as is re- in which to represent the knowledge base of the pro-
quired in a noniterative system). Rather, some infer- duction system. Propositional calculus is a subset of
ences are made in each cycle and then other inferences predicate calculus, which is a formal language. The
are made on subsequent cycles using recently substan- elementary components of predicate calculus 7 are
tiated inferences. The nonlinearity present allows the symbols that are combined to form what are called
system to model interdependent rules (that depend on atomic formulas. Sentences or expressions in predi-
several input facts; e.g., if two wheels and a rectangle cate calculus consist of connected atomic formulas and
are present, the object is a car; if two wheels and a are called well-formed formulas (wffs). In predicate
person are present, it is a bicycle). In the prior exam- calculus, expressions can contain variable (among oth-
ples, there is a large increase in confidence when the er) symbols, four connectives, and quantification is
evidence that a rectangle or a person is present is allowed. Propositional calculus allows the use of the
included and this is modeled by the nonlinearity in the same four connectives between atomic formulas as
system. The nonlinearity thus allows the system to predicate calculus, namely, AND denoted by A (which
handle such situations, where the combination of the forms a conjunction), OR denoted by V (forming a
initial pieces of evidence is greater than the sum of disjunction), IMPLIES denoted by -- (which forms an
their individual contributions, implication), and NOT denoted by - (forming a nega-

Both of the systems we consider use a local represen- tion). The connection (i.e., the result of applying any
tation of facts (one pixel per fact) and are thus less of the connectives: conjunction, disjunction, nega-
fault tolerant than a distributed representation (each tion, or implication) of any number of wffs is also a wff.
fact is distributed to several inputs), since the loss of In an implication, the left-hand side is called the ante-
one input pixel will completely eliminate one fact. We cedent and the right-hand side the consequent.
also only consider the optical realization of a fixed set Atomic formulas in propositional calculus contain only
of rules that are known a priori. This allows the use of predicate, function, and constant symbols (the use of
fixed filters and interconnection masks, which is pres- variable symbols such as x is precluded). To illustrate
ently more realistic than optical systems requiring the meaning of these symbols, consider the fact "Dave's
adaptive filters and interconnections. However, our student wrote a paper." This sentence would be rep-
system allows new rules to be inferred that are not resented as the atomic formula WROTE [PAPER, stu-
explicitly encoded. dent(DAVE)]. "WROTE" is the predicate symbol that

In Sec. II we define our terms and the initial scenario represents a relationship; "PAPER" and "DAVE" are
addressed. In Sec. III we describe a binary neural constant symbols and represent objects or entities;
architecture that can handle only binary (yes/no) type "student" is a function symbol that maps constant
decisions and an analog neural system that includes objects or entities to one another. Propositional cal-
the calculation of probabilities (without assuming mu- culus was chosen rather than predicate calculus since
tually exclusive events and/or independent asser- its operations can be realized more easily on the archi-
tions). Section IV describes a symbolic substitution tectures we consider. We will refer to the atomic
production system and a scenario where several similar formulas as "facts" and the implications (containing
parallel situations occur. In this case, a symbolic sub- any of the symbols and connectives) as "rules" in the
stitution implementation is preferable. We conclude knowledge base we discuss.
with a discussion in Sec. V. The types of implications or rules we consider are

called if-then-rules. Our knowledge base contains a
H. Defintion of Terms and Scenrio se,, of statements (assertions or facts) that are true at

In artificial intelligence, a production system con- any specific point in time and a set of if-then-rules that
sists of data, operations, and control.7 In real systems, are true at all times. The facts represent the current
these distinctions often become fuzzy. In the produc- world state and are considered the explicit declarative
tion system we consider, the data are referred to as a knowledge of the system. The rules encode the gener-
knowledge base, consisting of a set of facts and a set of al knowledge about the world and are the implicit
inference rules (also called production rules), that con- declarative knowledge. The production system
stitutes the operations performed on the facts. The makes inferences based on both the facts and the rules.
system control handles the order in which the rules are If any new assertions become true during one cycle of
invoked. In a data-driven system, the control selects the inference process, they are included as facts in the
the rules to be tested. These are the rules associated input to the system during the next inference cycle.
with present facts/data. This process continues until The production system we discuss is a forward-
the goals are satisfied. In a goal-driven system, the chaining or data-driven system, as opposed to a back-
control first selects the rules associated with the goals ward-chaining production system that is goal-driven.
and proceeds with the inferences to arrive at the In any production system, a set of goal formulas is
present facts/data (if possible). In the applications we defined. When any one of the goal formulas becomes
have in mind, we refer to the production system as an true, the system has reached its final state and the
inference engine, an expert system, or a rule-based inferences stop. In a forward system, the initial state
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of the system is set to the facts in the database that are a2 a3 a

true and the system is allowed to make inferences until
one of the goal formulas becomes true.

We restrict the rules in our knowledge base to be of
the form as a

For rule r-
IF (a0AND... AND a,) /

OR (aPAND... ANDav) (1)
OR ...

THEN C, .2 C3

Fig. 1. Example of a decision net representation of a rule base.
where the facts ai can be negations and where the sets
tarn to anl, lap to aq1, etc. are not necessarily disjunct (to
allow the OR statement description above). The set vehicle is equipped with a Doppler radar that provides
elements am, etc. are the antecedents for rule r and cr is velocity information and a video camera looking in the

the consequent. An example of a knowledge base in a same direction as a human driver of a vehicle usually
forward production system is shown in the graph or does. The video images are first processed by a sym-
decision net in Fig. 1. Every possible fact ai or c. in the bolic correlator as described elsewhere9 and summa-
knowledge base is represented by at least one node (a, rized below.
to ao and ca to c3), although Fig. I shows only one node The symbolic correlator compares the image with a
per fact. The consequents of the rules are represented set of geometric symbols of various forms, scales, and

by the bottom nodes (ci to c3) and the antecedents by rotations and outputs a symbolic description of the

all the other nodes above them (a, to alo). A specific objects in the image and their spatial locations. This
rule r is thus represented by the OR of the different denotes which geometric symbols are present, their

paths to a consequent node c,. with each path being the scales, rotations, and relative positions. This correla-
AND of a set of antecedents as in Eq. (1). For the tor is part of a symbolic preprocessing system that has

example in Fig. 1, rule 1 is its own knowledge base and that infers the identity of
the objects in the field of view. The stored geometric

IF (a, AND a5) symbols are the facts in the symbolic correlator's
OR (al AND a6 AND as) knowledge base. Geometric models of the possible
OR (a2 AND a6 AND a9) objects in terms of geometric symbols are the rules in

THEN Cl. the knowledge base. The preprocesssing symbolic

As Fig. 1 shows, our knowledge base with rules in the correlator system draws conclusions on the identity of
form of (1) will not have a tree structure. Rather, as in the object based on the geometric model rules. The
Fig. 1, there may be several root nodes that lead to the emphasis in this paper is on the production system
same intermediate node (e.g., a2 and a 4 can both lead to that operates on the symbolic correlation object out-
the intermediate node a), and intermediate nodes put data and not on how the symbolic correlation data
that lead to one another (e.g., a6 to a1o) and/or to the are obtained (although an analog production system
same bottom nodes (e.g., a5 and a9 lead to ci). The could be used to obtain this data).
knowledge base in Fig. 1 is completely described by the We assume three categories of facts in our produc-
three rules for the three consequents. Thus it can be tion system:
implemented in one cycle (matrix-vector multiplica- (1) inputs from the symbolic correlator (e.g., that
tion). However, if ci = a3, the iterative nature of our the obstacle in the field of view is a car, plus its position
production system and its ability to make many new and orientation);
inferences from a limited number of facts and rules can (2) inputs such as the velocity of the objects; and
be seen. Specifically, if cl is true and ci - a3, the (3) control and monitoring signals from the vehi-
system learns other rules (e.g., al AND a5 AND a3 AND as cle's steering and acceleration subsystems (that give
- C3, a I AND a6 AND a9 AND (3 AND as - c3 and a2 AND the speed of the vehicle and its direction of travel).
as AND a9 AND a3 AND as - C3) on successive iterations The rules in our production system include know)-
(without having been told these rules explicitly), edge about how to steer and control the vehicle in the

As a specific example of our production system, we presence of obstacles in different situations. As an
chose the problem of controlling a mobile robot (such example of a typical situation, consider the case when
as the autonomous land vehicles ) in an urban area. the vehicle is moving along smoothly in the right lane
This example will allow us to detail specific rules (in of the road (which is indicated by a curb, i.e., a solid
terms of objects such as cars rather than abstract ele- line and some elevation, or by gravel, i.e., a change in
ments such as a, and c,) and to specify when a neural or texture on the right side and a broken white line on the
symbolic substitution production system is appropri- left side). A typical situation would be when another
ate (as we will detail). This is a case in which most of car suddenly pulls out in front of the vehicle and moves
us are experts due to our experience in driving motor slower than the vehicle. In such a situation, appropri-
vehicles. The final results of the inferences (the goal ate control signals or consequents of goal formulas
formulas) are control instructions such as "slow associated with this situation could be to blow the
down," "blow the horn," etc. We assume that the horn, change lanes, slow down, stop, etc. The rules are
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such that they use the specific symbolic preprocessor outputs (control signals or just fdback)

outputs, the available sensors, and the control and
monitoring signals, e.g.,

IF (object in field of view is a car T.-3
AND on collision course with this object a.

AND object moving slower than vehicle)
THEN slow down.

*1. Neural Network ArchRecrtwes for Production
Systems _

We first consider the use of a synthetic neural net-
work to implement the production system. As dis- inputs (from sensors coreitors or dck)

cussed, we use a forward-chaining system, i.e., a data- Fig. 2. Neural network for the rules in the example in Fig. 3.
driven production system. Such a system does not
know in advance which specific goal(s) to look for, and
thus it bases its inferences on its current known state of
the world and not on what other facts are necessary to a --a b
satisfy a particular goal.

A. Binlary Neural Network System a adC and f -40-g
As an initial case, we consider binary-valued deci-

sions and logic statements, i.e., we do not consider
reasoning with uncertainties. We use a two-layer neu- b -- a
ral network with binary neurons (neurons with outputs
that can take on only the values 0 and 1) to store the
rules and make the inferences. The input nodes (first f and g -- C
layer) represent the antecedents of the rules and the
output nodes (second layer) represent the conse- Fig. 3. Rules for the neural network example in Fig. 2.

quents. The antecedent nodes in the input are con-
nected to their consequent nodes in the output by links
of weight one (since uncertainties are not considered). the need that other neural network architectures have
The links store the connectives (in our example, they of requiring varying thresholds or nonuniform inter-
are only ANDS) of the rules. The output nodes are connection strengths. The antecedent (input) and
nonlinear computing elements that sum their inputs consequent (output) vectors together constitute the
and threshold the result to give binary-valued outputs. current world state, which is a list of all the true asser-
In a forward-chaining system, the initial outputs (on tions at a given point in time, i.e., after one pass
the first iteration) prove certain consequents to be through the system. In the example in Fig. 2, if, at
true. These consequents ther become facts or asser- cycle or iteration n, the vector elements representing
tions that are input to the system (by feedback) on the antecedents a, c, and f are all 1, the vector element
second iteration. Thus, there must be an input and representing the consequent g will be 1 after multipli-
output node for every possible assertion (all anteced- cation and thresholding. The resulting consequent
ents and consequents) in this production system. vector after cycle n could be logically oRed with the

The neural production system is best seen by an prior input vector, to provide the new input for the
example. Figure 2 shows the interconnection pattern next pass (cycle n + 1) through the system. The new
for the neural network for the example in Fig. 3. This input thus has all the new consequents obtained in
problem can be posed as a matrix-vector multiplica- pass n included as facts or true antecedents for cycle n
tion, if we assign all assertions (antecedents and conse- + 1 plus the old true antecedents. This is necessary,
quents, i.e., a through g) to different binary input and since some of the consequents from one pass can be
output vector elements and if we describe the intercon- antecedents for rules and thus new consequents may
nections (the left-hand side expressions in Fig. 3) as be satisfied on a subsequent pass. We can simplify
binary 2-D matrix elements. The matrix-vector mul- this system and avoid the logical OR function by con-
tiplication and subsequent thresholding then yields necting each input with its corresponding output neu-
the output vector of consequents. The output thresh- ron with an interconnection strength equal to the out-
old (denoted by T in Fig. 2) varies from element to put threshold required or with multiple unit-weight
element, depending on the number of antecedents in interconnections which equal the strength required to
the corresponding rule. By replicating several con- fire the output neuron. This ensures that once a fact
nections, all output neurons can be made to have an (neuron) has been proved (fired), it remains true.
equal number of inputs and thus a uniform output This is equivalent to having unit diagonal elements in
threshold can be used and all interconnections still the interconnection matrix. With unit diagonal ele-
have the same strength. This approach circumvents ments, conventional neural networks such as the Hop-
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P1 L1 P2 L2 3 (summed) vertically and imaged horizontally by cylin-
------ - drical lens L2 onto the 1-D detector array in P3. The
-' -driver circuits for the input laser diodes could have

alp I memory (so that once a laser diode is on, it stays on;
with nonzero diagonal interconnection matrix ele-

- ments this is not necessary). With this system, all
possible inferences based on the current world state
are made in parallel. This produces a new world state

Fig. 4. Schematic of an optical matrix-vector implementation of on which all inferences are made in parallel, etc. If the
the neural network in Fig. 2. spatial light modulator at P2 has 1000 X 1000 ele-

ments, the input P1 and output P3 vectors have 1000
elements and the capacity of the production system is

field model cannot be shown to converge. However, as 1000 assertions.
noted in Sec. I, our production system application of B. Analog Neural Network System (Including
neural networks is different and thus is not subject to
the same constraint. This process (of matrix-vector oiitis)
multiplication, thresholding and ORing) is iterated un- We now consider the case of reasoning with uncer-
til one of the goal formulas is proved or until no change tainties, i.e., when probabilities are associated with the
occurs in the output neuron states. antecedents and/or the consequents of the rules. The

We can conceive of situations where we want to probabilities are heuristic and are derived from our
deviate from the constraint of unit diagonal elements general knowledge about the world. This case can be
for all the facts. For example, a neuron that gets its handled by an analog neural network. The input and
input from the symbolic correlator output should only output neurons (vector elements) are now analog (not
fire when the geometric symbol that it represents is binary as in the previous discussions) and can assume
present and should stop firing when that symbol disap- any real value between 0 and 1. Each neuron repre-
pears. Such a neuron should not have a connection sents a fact (input antecedent or output consequent)
between it and the output neuron correpsonding to it. and its output (the amount by which it is firing) is the
However, a fact such as "the final destination is Little probabilitiy of that fact being true. The connection
Rock, Arkansas" will only be true during initialization strengths (matrix elements) between the input neu-
of the network and the network will have to "remem- rons (the antecedents of the rules) and the output
ber" it, i.e., the neuron representing it should keep neurons (consequents) represent the contributions of
firing. This can only be achieved by a unit diagonal the antecedents to making the different consequents
element and feedback. Therefore, in the design true. The outputs from the antecedent neurons are
stages, all the facts that have to remain true once they multiplied by the connection strengths and a nonlinear
are fired should be assigned a unit diagonal element. operation is performed on the sum at each of the out-
As noted earlier, this is a new synthesis method for the put neurons. The nonlinear function can be a sigmoi-
connection matrix suitable for our application. dal function f(x) - 1/[1 + exp(- ax)], where a deter-

Figure 4 shows the schematic of an optical imple- mines the slope of the nonlinearity. In the limits, the
mentation of the neural net in Fig. 2. We use an sigmoidal function can be a step (a - -) or approxi-
optical binary vector-matrix multiplier with a 1-D mately linear when a is made very small compared to
array of laser diodes at P1 (for the input vector ele- the inverse of x in the region of interest.
ments), a 2-D matrix of rules at P2, and a linear array of Let wi be the probability of antecedent i being true
detectors at P3 (whose vector output is the matrix- (the amount of trueness of fact i) and let Pj(wi - 1) be
vector product). After thresholding, these P3 outputs the probability that consequent j is true given that
yield the neuron states (and the vector for the next antecedent i is true. For illustration, consider a rule in
iteration). The matrix elements (interconnections) the knowledge base that infers that the object in the
are fixed (and binary) so that film can be used at P2. image is a truck if there are two circular and one
The thresholding of the P3 result can be performed rectangular geometrical symbols present. Let w, rep-
electronically in the feedback loop to the input P1 laser resent the probability that a circular symbol is present,
diode array or can be included optically on the output let wij be the probability that two circular symbols are
P3 device. The output vector signals can be fed back present, and let w 2 be the probability that a rectangu-
electronically or optically with mirrors or optical fibers lar symbol is present. Also let P, be the probability
(in an all-optical system). Figure 4 indicates electron- that the object is a truck. Let us heuristically assign a
ic thresholding and feedback. The optical connec- probability of 0.1 that the object is a truck if there is
tions are easily achieved. The light from P1 is spread one circular symbol present, a probability of 0.2 if only
out horizontally by cylindrical lens Li to uniformly a rectangle is present, and a probability of 0.8 that the
illuminate the rows of the 2-D array in P2. The array object is a truck if two circular symbols and a rectangle
at P2 has the connections from P1 to P2 encoded on it are all simultaneously present. In our notation, the
as a matrix. The light leaving P2 is the point-by-point probabilities are written as
product of the input P1 vector and each of the column
vectors in P2. These products are integrated. Owl - 0.,
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p =I.2 - 1) = 0.2 1A
pl(w11. - 1; U:, 1) = 0.8. 1

Note that pl(u'1 .1 = 1; w2 
= 1) = 0.8 is not equal to

2pl(w) + pj(w2 ) = 0.4. Thus, the probability of a 0 0
truck increases nonlinearly as more evidence is gained0 0 0 0 0 0 0 0 0 0 0 0

(i.e., the probability of a truck, when three of its geo- , ,
metrical components are present, is larger than the w,/

sum of the probabilities when each of the individual W11 wAA

components is present). Thus a nonlinear function is 10
needed to map the inputs to the proper output neuron
strength.

Figure 5 shows the interconnection strengths and Fig. 5. Interconnection strengths and operations required in a
operations required for a general neural network for neural network for reasoning with uncertainties.
reasoning with uncertainties. The strengths of the
output (consequent) and input (antecedent) neurons
are given by c, and a,, respectively. The connection
strength between ai and c, is denoted by wij and the
strength of a given output element is cj = f(Z wijai),
where f denotes the output nonlinear function and the
sum is over all assertions. Let us now detail how ... , o
analog values might be assigned to the strength a, of = L ,
the input neurons. Each fact, such as "a circular sym- Fig. 6. Cascaded optical correlator system for symbolic substitu-
bol is present," is associated with one of the input tion.
neurons. If these facts are obtained from a symbolic
correlator and if the correlation peak value is 0.6, we
would assign a certainty of 60% to that statement and
the output strength of this neuron would be 0.6. The peaks in different regions denoting where the different
inputs to a second-layer neuron are the products of the symbols are in the input plane P1. We threshold P3 to
outputs of the input first-layer neurons and the provide delta functions at the locations of the input
weights that connect them to that output neuron. symbols. P3 serves as input to the second correlator.
Each output neuron forms the sum of its inputs and The Fourier transforms of the output symbols to be
performs the nonlinear operation f on the resultant substituted are spatially multiplexed at P4. This
sum. These outputs indicate the probabilities that achieves the substitution of the output symbol by con-
the associated consequents are true. The slope of the volution with the delta functions. The different spa-
nonlinear function and the weights connecting the in- tial frequency carriers at P4 produce the sum of the
put and output neurons are used to provide an output different substituted patterns at P5 as is desired. This
c, equal to the proper analog probability. Since it is system is detailed elsewhere.1 1 .12 The typical use for
preferable to have the same nonlinear function for all these systems has been in optically performing logic
output neurons, we fix the output nonlinear function and numberic functions. We now consider its use in a
and vary the interconnection weights w,, to achieve cj new production system application.
outputs equal to the desired probabilities. In this
analog neural network, the optical mask at P2 of Fig. 4 A. System Overview
must have analog transmittances. We first overview our symbolic substitution produc-

tion system concept. For our production system ap-
M. Symbolic Substitution Production System plication, the input to the symbolic substitution ma-

A forward-chaining production system can also be chine is a coded image representing the facts (or
implemented using symbolic substitution. The use of assertions) that are true at this point, with each possi-
a symbolic substitution production system is appropri- ble assertion represented as a specific symbolic pattern
ate when a set of similar situations (such as the control in a specific location. An assertion is zero until it
of a fleet of vehicles) has to be handled in parallel on becomes true. The system implements the if-then-
one processor (as we will detail later). Symbolic sub- rules in the knowledge base by looking at which ante-
stitution 0  involves two steps: the recognition of an cedents (symbols) are present in the input and substi-
input symbol and the substitution of an output symbol tuting the symbols for the consequents of those rules
for that input symbol. This pair of input-output sym- whose antecedents are present. We substitute only
bols is called a substitution rule. The set o substitu- for assertions that were not true previously and do not
tion rules specifies the symbolic substitution system. change symbols for assertions that were previously
The implementation of symbolic substitution we con- true since they are still true. By changing zero sym-
sider uses two cascaded optical correlators as shown in bols the system thus adds the new facts (consequents)
Fig. 6. In this architecture, frequency-multiplexed that become true At the invocation of the rules. As
matched spatial filters of the possible input symbols noted earlier, the consequents are placed at their prop-
are placed in P2 and the first correlation plane P3 has er locations in the output
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B. Filter Organization junctions with the same consequent lie in different
Symbolic substitution logic and numeric processors locations in the same region of P3. If a peak exceeds

(such as Fig. 6) substitute patterns in the same location threshold anywhere within one of these P3 regions, the
as the input patterns. However, since our symbolic second correlator (P3 to PS) substitutes the proper
substitution production system substitutes output consequent symbol in its proper location in P5. Once
symbols in different locations from those of the input the symbolic substitution has been done at P5 for one
symbols, the second correlator in the cascade in Fig. 6 pass through the system, the P5 outputs are fed back
will be modified from its prior versions 1 

U2 as we dis- and ORed with the prior P1 data to produce the new
cuss in Sec. IV.C. As an example, consider the case antecedents that are now true for the next pass
when input and output facts (i.e., antecedents and through the system. Thus, this architecture also iter-
consequents) are the same (e.g., our c, = a 3 example in ates similarly to the neural network system. We now
Fig. 1). In this instance, we assign the same location detail the filter design, symbolic patterns used, and a
and symbol to both. If both a fact and its negation new optical architectural implementation.
enter as antecedents a,, each is assigned a separate C. Filter Implem~rtatio and Symbolic Pattern Selection
location and symbol. We also allow separate locations
for objects in different positions in a scene (e.g., the car Since the rules (separate conjunctions are separate
is in front, back, left, or right in our mobile vehicle rules) are not linear, we cannot implement the symbol-
example). ic substitution in one correlator, rather we require a

We now discuss the specific organization of the fil- cascaded correlator such as in Fig. 6. The first correla-
ters. Our rules are in the form of the OR of antecedent tor (P1 to P3) achieves the recognition and conjunction
sets (each of which is the AND of a set of antecedents), of each antecedent set and each conjunction has a
i.e., specific location in P3 assigned to it (i.e., a correlation

peak will appear at a specific location in P3 if a given
IF (0 AND b) conjunction is true). This is easily achieved since the

OR (C AND d) (2) location of each antecedent in P1 is known, fixed, and
THEN X. specified. Thus the P2 filters include this positional

In the example in (2), there are several antecedent sets P1 information and the carrier spatial frequency for
(which we refer to as conjunctions). Each of these each filter is chosen to select the P3 region of the
must be viewed as a separate filter at P2 of Fig. 6, each correlation peak. The specific location of the correla-
conjunction has a separate location assigned to it in P3, tion peak in the region (output correlation plane) is
and all conjunctions associated with the same conse- determined by the correlator. We select the positions
quent are assigned to the same region (output correla- of the antecedents in P1 such that antecedents that are
tion plane) in P3. The filter implements the logic AND members of conjunctions associated with the same
operation directly (rather than using the symbolic sub- consequent lie in the same region in P3. This reduces
stitution system to implement logic functions). We the range of spatial frequencies required on the P4
now detail these issues. The rule in (2) can be rewrit- filters (discussed later) to read out the same conse-
ten as two rules with the same consequent quent pattern for each conjunction in the same region

of P3. Since the locations of the antecedents in P1 are
a AND b - x (3) known, the locations of the correlation peaks in P3 can
C AND d -- x. be specified. The P2 filters can be spatially or fre-
Each rule is represented by a separate filter function quency-multiplexed or a combination of spatially and
with the filters being the conjunctions a AND b and c frequency-multiplexed P2 filters can be employed to
AND d. Thus, the two filters each contain both ante- achieve the required results. The substitution filters
cedents and their locations properly encoded and the at P4 (in the second correlator) are required to substi-
logic AND operation is included in the filter design. To tute (activate) the symbol (in a specified location in
see why separate filters and P3 locations are necessary PS) for any consequent that is now true or instantiated
for each conjunction, recall that several antecedents (given the present world state of antecedents). Since a
exist within each conjunction and several conjunctions peak (after P3 thresholding) anywhere in any of the P3
yield the same consequent as in (2) and (3). If the regions (corresponding to different consequents)
same P3 location were assigned to the two conjunctions should activate the associated consequent symbol, we
in (2) or (3), then if only the antecedents a and c (i.e., encode the different consequent symbol patterns on
parts of each of the two conjunctions) were present, the different sets of spatial frequencies at P4. The spatial
P3 output would exceed threshold (by summing par- frequencies used for the filters of one consequent are
tial correlations from several conjunctions). determined from the positions in P3 of correlation

The organization of the rules as the OR of antecedent peaks (corresponding to different conjunctions that
sets of AND operations was chosen since it is comput- yield the same consequent). Thus, a correlation peak
able with the production system implementation de- in any of a number of specified locations in P3 yields
scribed above. The optical filters perform the AND activation of the symbol for that consequent at the
(and hence the conjunction operation) by addition on specified P5 location. The instantiated consequents
the P3 thresholding array device. We arrange the are superimposed at P5 with the P6 threshold set to
location of the output correlation peaks such that con- implement the OR function in rules of the form of (2).
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The P5 data are then fed back to P1 to produce a new values associated with the correlation of a reference
world state of antecedents for the next iteration. If and shifted versions of the input symbols [since we will
the spatial light modulator at P1 has memory, the P5 utilize a mask of apertures (holes) in front of P3 with
data can be simply fed back iteratively to P1 to form aperLures placed only at the locations of possible legiti-
the new antecedents (the OR of the prior facts and the mate conjunctions]. Other researchers considering
new consequents/facts). This use of symbolic substi- symbolic substitution correlators have expressed con-
tution differs from prior work (involving the imple- cern about this. A second issue is the need for the
mentation of logic and numeric functions) since the different symbolic patterns to have the same energy
output symbols are substituted in different locations, (same number of black-and-white pixels). This is not
not in situ. essential, since the weight of the different filters can be

We now consider the symbolic patterns used for the adjusted to yield the same correlation peak height,
antecedents and consequents. If simple points in even if the energy of the N symbolic patterns differs.
specified P1 locations (rather than patterns) are used However, when cross correlations are considered, their
to denote true antecedents, a set of input points with normalization with respect to all possible input pat-
given relative spatial locations can instantiate an out- terns is not easily achieved. Thus, it is preferable for
put P3 correlation peak (regardless of the absolute each symbolic input pattern to be the pattern plus its
location of the set of points in P1). This will yield false conjugate. This is detailed elsewhere 91 and thus an
peaks in P3 at locations proportional to the position of increase in the SBWP of symbolic patterns by a factor
the set of points in P1. In this instance, this is a of 2 is required to include this effect. This also solves
disadvantage of the use of a correlator when the loca- the cross-correlation problem at peak locations dis-
tions of input facts are known (i.e., a correlator auto- cussed earlier, since it assures that every conjunction
matically searches all absolute locations of antecedent now has a unique active (white pixels) symbolic pat-
set patterns, even though this is not necessary here). tern. In this case, the cross correlation of any two
The possible cross-correlation effect of this at P3 can patterns will differ by at least 1/N from the autocorre-
be reduced by using symbolic patterns (not points) for lation and can thus be removed by thresholding.
each fact. Two choices exist for these symbolic pat-
terns. We can use binary patterns (i.e., use log2N D. Aflernative Optical Production System Symbolic
pixels to represent the patterns for N facts). This Substitution Architectures
requires N log 2N pixels in P1 for N facts (antecedents Since the shift invariance of a correlator is not neces-
and consequents). As an alternative, we can use or- sary, one could implement the production system with
thogonal patterns for the symbols for the N facts. the P1 to P3 system being a matrix-matrix or vector
This will remove cross correlations at the peak location inner product (VIP) multiplier. If symbolic patterns
at the cost of an increase in the space-bandwidth prod- were not used for the P1 facts, such a system would be
uct (SBWP) required at P1. Specifically, the use of identical to the neural network architecture of Sec. III.
orthogonal symbolic patterns requires N pixels per The disadvantage of using a VIP processor is that
symbol or N2 pixels to encode N symbols (antecedents multiple situations (i.e., control of a fleet of autono-
and consequents) compared with log 2N pixels per sym - mous vehicles) cannot be easily handled and that the
bol or N log 2N pixels to encode N symbols with binary basic cascaded optical correlator architecture would be
patterns. Thus, the use of binary symbols reduces the altered (and thus the same optical system would not
required SBWP at P1 by the ratio (log 2N)/N. For allow multifunctional use for logic, numeric, morpho-
large N, this can be significant (e.g., for N = 1000, the logical, and production system applications). To re-
use of orthogonal symbolic patterns increases the tain the ability of this system to handle multiple situa-
SBWP required at P1 by a factor of 100). Hence, the tions (e.g., a fleet of vehicles), we must retain the shift
use of binary encoded symbolic patterns is preferable invariance of a correlator. However, with facts en-
from practical implementation considerations. This coded on one of several lines in P1, we require only
seems to be realistic, since the probability is small of vertical shift invariance. Thus, the use of a 1-D verti-
finding simultaneously: M instantiated antecedents cal correlator would suffice and reduce cross-correla-
(whose relative spatial locations are the same as that of tion peak intensities (since horizontal shifts of P1 pat-
one of the possible correct conjunctions) whose corre- terns would now not contribute to false correlation
lation with the P- flter for that conjunction would peaks).
yield a correlation peak in P3 at an allowed location, We now advance a preferable new optical symbolic
and that these antecedent patterns will each have a substitution production system architecture (Fig. 7)
high cross correlation with the corresponding true set for this case in which the location of all possible facts is
of anteceden a. Thus, we adopt binary-encoded sym- fixed (position encoded). In this case, we use a binary
bolic patterns and consider orthogonal patterns only spatial light modulator (SLM) at P1 with one pixel per
when the device at P1 can accommodate the increased fact. This significantly reduces the SBWP require-
SBWP. ments for P1. We use the position encoding of P1

Two other issues associated with the symbolic pat- symbols to encode the symbols for each fact with a
tern selection merit attention and discussion. Since fixed in situ mask at P2 placed directly behind P1.
the locations of possible correlation peaks in P3 are Thus, we need only activate one pixel on the binary
known, we are not concerned with cross-correlation SLM at P1 and this automatically inputs a 2-D sym-
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P. P2P, PAsionality and complexity of the required interconnec-
tion pattern. The symbolic substitution correlator
also easily allows control over the output correlation
peak intensities, whereas the neural network system
requires multiple replicated inputs to easily allow uni-

.... ... ... , ' form threshold values for the output neurons.
.... ....... .. In terms of the number of facts that can be accom-

Fig. 7. New optical production system symbolic substitution archi- modated, near-term optical devices limit both systems
tecture with reduced SBWP requirements and fixed symbol mask. to106 facts assum 1000 X 1000 element b iaryto 1 fcs(assuming 10 ×100emntbinary

input SLMs). This should be suitable for many appli-
bolic pattern to the system (with the symbolic pattern cations, with combinations of multiple parallel archi-
provided by the fixed film P2 mask, thus reducing the tectures allowing extension to more facts. The storage
SBWP requirements for realistic real-time SLMs at capacity (number of rules that can be handled) is limit-
P1). This new architecture allows a larger production ed by the capacity of the volume hologram in the
system (one with more facts) to be realized, without symbolic substitution system. This is expected to be
wasting real-time SBWP at P1 for the symbolic pat- less than the number of interconnections possible in
tern encoding. The system of Fig. 7 also uses only one the neural net system. Both architectures allow new
correlator, rather than a cascaded correlator. In this rules to be inferred that are not explicitly encoded.
case, the feedback from P3 to P1 requires a simple Space and frequency-multiplexed correlators have
CGH, fiber-optics connection, or electronic feedback already been fabricated. Even though they are at a
system which activates a Pi pixel if any pixel in a given more mature level of development than are optical
P3 region is activated. This new Fig. 7 architecture neural network architectures, it would be premature to
thus requires a single three-plane one-correlator sys- select the symbolic substitution architecture over the
tem that is structurally similar (and no more c'mpli- neural network one for this application.
cated) to the neural network architecture of Rig. 4, but Thus, no definite conclusion is possible on the pref-
which allows multiple situation processing. The two erable choice of one system. This can only be ad-
neural network and symbolic substitution approaches dressed after a detailed analysis of the mask requireddresedaferomdtaiedenaysino themak.equre
are compared in Sec. V. in the neural network and the positioning require-

V. Discussion ments of the symbolic substitution correlator.
Now that both this symbolic substitution implemen- We gratefully acknowledge the Defense Advanced

tation (Sec. IV) and the neural network realization Research Projects Agency and NASA Ames for their
(Sec. III) have been described, let us discuss when the support of this research.
symbolic substitution implementation is preferable.
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Abstract

Pattern recognition techniques (for clustering and linear discriminant function selection) are

combined with neural-net methods (that provide an automated method to combine linear

discriminant functions into piecewise linear discriminant surfaces). The resulting "adaptive-

clustering neural net" is suitable for optical implementation and has certain desirable properties

in comparison with other neural nets. Simulation results are provided.

I. Introduction

Artificial neural networks have received much recent attention1 ' 2, 3 and various optical

realizations 4 , 5 of the classic backpropagation neural network6 have been suggested. Various

other optical neural network architectures have been described 7' 8, 9 and some 1 0 ' 11, 12, 13 have

been demonstrated conceptually. In this paper we distinguish between optimization and

adaptive learning neural networks (Sect. II) and we discuss various neural-net issues as

background. We then advance a new "adaptive-clustering neural network" (ACNN) in Sect. III.

Simulation results (performed on a Hecht-Nielsen Corporation electronic neural network) are

then presented (Sect. IV), optical realizations of the ACNN are discussed (Sect. V) and a

summary is advanced (Sect. VI). This ACNN uses a new learning algorithm that combines

standard pattern recognition techniques and neural-net concepts to arrive at a new and quite

useful method for neural network synthesis that can be realized optically with attractive results

and potential.



II. Artificial Neural Networks

We distinguish between two main classes of neural networks 14 ' 15: optimization neural nets

and adaptive learning neural nets. Optimization neural nets are well understood and their basic

theory is well established 1 6, 17 Associative processors are another class of neural

networks 16 , 18, 19, 20, 21 that are also well understood. In this paper we consider adaptive

learning neural nets. The major advantage of a neural net in multiclass pattern recognition is its

ability to compute nonlinear decision surfaces (typically combinations of linear decision surfaces)

for complex multiclass decision problems. In fact, many neural-net classifiers can create decision

boundaries of arbitrary shape. Our proposed neural net uses this feature of neural nets in

conjunction with initial weights selected using class prototypes of clusters - hence we refer to this

as an adaptive-clustering neural net. It employs a three-layered architecture, consisting of input,

hidden and output layers with interconnections between the input and hidden layers, and

between the hidden and output layers.

1.1. Neuron representation spaces and dimensionality

To maintain a reasonable number of input (P,) neurons, we recommend 14' 15 that the

neuron representation space be an appropriate feature space. For image recognition applications,

the feature space should not be pixel-based. Other feature spaces have the additional advantage

that they can be made invariant to transformations such as in-plane rotations. This greatly

reduces the number of training images required (i.e. we need not train on transformed versions

of the objects to be identified). For an M-dimensional feature space, we use M+I input

neurons. The additional neuron is used to incorporate the threshold of the hidden-layer neurons

into the input vector with the state of this neuron set to unity. We now detail this. A linear

discriminant function (LDF) in a feature space described by feature vectors x can be written as

g(X)=wtx+w 0 , (1)
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where w defines the orientation of the linear decision boundary and w' defines its offset, or

location. When decisions depend on whether g 0, then -w 0 is the threshold for the vector-inner

product (VIP) wtx. By adding an additional "1" to the feature vector x to produce y, we include

w0 in w and we can now write Eq. (1) as

g(x) =-- wy. (2)

The number of neurons in layer two (hidden layer) is generally chosen empirically. The

number of hidden-layer neurons determines the complexity of the decision surface. Thus too few

neurons lead to poor classification performance, since a decision surface of complexity sufficient

to separate the various classes cannot be created. In most neural nets, the use of too many

hidden neurons is wasteful of resources and leads to poor generalization. By this we mean that

the decision surfaces are adapted to the peculiarities of the training set.

Local minima are a frequent topic of discussion associated with the number of hidden

neurons used. A local minimum is a value of the energy function that is a minimum in a local

region, rather than being a global minimum. In training a backpropagation (BP) neural net 6 , the

initial state of the hidden-layer neurons is random and a given error rate and some energy is

obtained. When training is repeated with different initial hidden neuron states, if a different

error rate results, a local minimum exists. One must vary the number of hidden neurons and

retrain with different initial conditions to empirically determine the number of hidden neurons.

The presence of such variables results in long training times for neural nets (as various numbers

of layer-two neurons and various starting conditions are tried) and it can result in a neural net

that cannot easily be generalized to test data.

Local minima occur when hidden neurons become redundant during training (e.g. two of
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the A' hidden neurons encode decision boundaries that lie very close to one another). If each

neuron encoded a distinct decision boundary, a lower error rate would result (if the number of

neurons were too few). When the number of distinct hidden neurons is sufficient (equal to or

greater than the minimum required), there is no effect on classification performance, since

sufficiently complex decision surfaces can be created despite redundancies in the hidden neurons.

Thus, in this case local minima are not of concern. Many researchers have found that extensive

methods to produce 100% classification on training data are not merited, since test set.

performance often does not reflect such improved training set results. Recent work 22' 23 on the

choice of the number of hidden neurons has concentrated on the case when the training samples

are in random positions in the feature space, which is almost never the case in real pattern-

recognition problems.

Thus, although local minima are not of major concern, an alternate technique to determine

the number of hidden neurons with significantly reduced effort is a significant concern. Our new

neural net addresses this issue by an organized procedure that selects the number of hidden

neurons based on the number of clusters present in the multiclass data to be separated (as

detailed in Sect. Ill).

The number of neuron layers used is another variable. For BP, it has been shown 24' 25 that

any decision su .ce can be approximated to arbitrary accuracy with a three-layer neural net.

Four-layer neural nets can also produce any such decision surface, but they are harder to train

(since the Hessian of the criterion function with respect to the weights is more ill-conditioned

when more layers are used) and they generally introduce more parameters that must be

empirically selected. Since our neural net also approximates any such decision boundary with

three layers, we restrict attention to a three-layer neural net.



'lPi itunmlcr of' ,utput-layer neurons equals the number of classes.

11.2. Criterion or error functions

One of the most popular adaptive learning neural nets is backpropagation (BP)6 . The

problems with this neural net are that it requires a large training set and long training time, and

does not necessarily converge to the best minimum. Backpropagation is an example of a neural

net which is trained by the minimization of an error or criterion function. The form of the error

function that is minimized for such nets can affect performance and training time (e.g., the error

function with the best error rate is often the one for which it is most difficult to reach a

minimum error 26 ). Standard BP uses an error function based on a sigmoid transfer function,

while our ACNN uses the perceptron error function in training. We recently provided26 a

comparison of various error or criterion functions. It was shown that, in general, the use of a

perceptron criterion function provides faster convergence with comparable error rates P to those

obtained with the more popular sigmoid criterion function. The error function choice is not of

major concern in the performance of BP and our ACNN (it is included to note the differences

between BP and ACNN and because the criterion function used specifies the type of linear

classifier employed, as we detail in Sect. III).

H.3. Update algorithm

One reason for the slow convergence of BP is that a gradient-descent (delta rule) algorithm

is often used to update the weights in training. Our ACNN uses a conjugate-gradient

algorithm 2 7 for weight update since it is faster and does not require the empirical choice of

parameters such as the learning rate and momentum 2 6 ' 28. In conjugate-gradient updating, all of

the training set data are fed to the system (once) and then the weights are updated. Conversely,

with gradient descent the weights can be updated after the presentation of each sample in the

training set. A batch type of gradient-descent algorithm can also be used, with weights updated

only after all training data have been presented to the system once. Generally, batch gradient
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desent h:is thic slowest convergence (since the parameters cannot be updated and selected at

different steps). Sequential (non-batch) gradient descent generally performs better than batch

gradient descent, since it makes more steps toward the solution (in one presentation of the

training set of data). However, selection of its parameters is empirical and we have found that

conjugate-gradient optimization performs better. We attribute this to the fact that conjugate-

gradient optimization adapts the learning parameters in a sensible way, whereas these

parameters are kept fixed or adapted heuristically for gradient descent.

In difficult multiclass decision problems we have found conjugate-gradient training to be

much more efficient than gradient descent. With neural net hardware and software (such as the

Hecht-Nielsen Corporation AZP which we use) conjugate-gradient optimization is very

attractive. In our comparisons of BP and the ACNN we use the same conjugate-gradient

algorithm to update the weights.

II.4. Initial weights

Another reason for the long training time for BP is that the initial weights are chosen

arbitrarily. In our ACNN algorithm, the initial weights are set using pattern-recognition

techniques and then they are refined using neural-network techniques. This is a major reason for

the improved performance of our ACNN. We have tested BP using initial weights chosen from

clustering techniques similar to those used for the initial weights of the ACNN. We found 2 9

negligible improvement in training time and worse performance in some cases. We attribute this

to the fact that BP can sometimes use hidden neurons in more sophisticated ways than is the

case in the hidden layer of our ACNN and that this cannot be achieved when a preset weight

choice is used.

This present section was intended to highlight issues associated with neural networks and
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algorithm.

IIl. Adaptive clustering neural net (ACNN) training algorithm

Our three-layer ACNN is shown in Fig. 1. It is similar to the standard multilayer

perceptron. We now detail its design and use for multiclass pattern recognition. The input (P1 )

neurons are analog and represent a feature space which can be of low dimensionality (we add an

additional feature which is always kept at unity to adapt the threshold of the hidden neurons as

well). The hidden-layer neurons at P2 correspond to clusters in feature space, with several

clusters (neurons) used for each class in a multiclass application. The P I-P 2 weights are used to

assign an input to a cluster. We typically use two to five clusters per class. The layer two

neurons are binary and (in testing) the P2 neuron with the largest input activity fires and

denotes the cluster to which the input belongs. During training the PI-P2 weights adapt as we

will detail (we employ a conjugate-gradient algorithm) and thus refine our initial weight

estimates. The hidden layer to output weights are fixed (all are either zero or one) and perform

the mapping of the P2 clusters to one of the classes (with one P 3 neuron assigned per class of

data). Thus, we initially assign several layer-two "cluster neurons" to each class and use fixed

P-P3 weights to assign each P cluster to a final class (output neuron in P3). This is attractive

and new since it allows us to use standard clustering and pattern-recognition techniques to select

the initial P -P, weights (initial LDFs) and new neural-net techniques to adapt or refine these

weights. We employ a perceptron criterion or error function (this defines our LDFs) rather than

a sigmoid error function, since faster convergence with a comparable error rate is obtained.

There are no commonly-used standard (non-neural net) techniques to obtain piecewise

linear decision surfaces for two- or multiclass problems (except nearest-neighbor methods).

Because of the importance of neural-net techniques in addressing this problem, and since we use
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nearest-neighbor techniques in selecting our clusters, we briefly review standard multiclass

techniques. In a nearest-neighbor classifier, the distance between an input and all training

samples is calculated and the input is assigned to the class of the closest training sample. From

tests on all training data in each class, the bounds on each class are determined and one can

obtain piecewise linear decision surfaces. However, the nearest-neighbor technique is

computationally intensive (requiring calculation of the distance to all training samples).

Conversely, neural nets have a long training time (which is off-line and of less concern) but their

classification times (an on-line requirement) are short. In addition, all training samples must be

stored for a nearest-neighbor system and thus storage requirements can be excessive. Finally,

nearest-neighbor systems do not perform well when the probability-density functions of the

classes overlap significantly. The calculation of the K nearest neighbors is useful here (the input

is assigned to the class to which the majority of these K samples belong). However, the selection

of K is empirical.

Two other multiclass techniques are Gaussian and linear classifiers. Gaussian classifiers

assume that the data in each class are normally distributed and for each class its mean and

variance are estimated. To classify an input vector, a posteriori probabilities are calculated for

each clasE, with Bayes' rule, and the input is assigned to the class with the highest probability.

This technique (and all parametric methods) work only if the data follow the assumed

distribution and this is rarely the case. To produce multiclass decision boundaries with LDFs,

the mean vector m e. of each class can be calculated and used as an LDF. The VIP of the input

with each m and thresholding denotes the class estimate for the input. Criterion functions

(error functions) represent a preferable way to select an LDF for each class. One can employ

pairwise LDFs (for each LDF, some class i is compared with another class 3). These approaches

are computationally intensive and not attractive for problems with many classes and they may

lead to decision surfaces that have undefined regions (not corresponding to any class).
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Thus, standard linear-discriminant techniques for multivariate pattern recognition allow us

to determine suitable linear discriminants, but these are generally not powerful enough for

realistic pattern-recognition applications that require nonlinear decision surfaces. In our ACNN,

neural-net techniques provide refinements to the linear-discriminant weight estimates and

automatically combine many linear decision boundaries into piecewise linear decision boundaries.

We now detail the design and update rules for our ACNN.

I1.1. Selection of the number of hidden layer (cluster) neurons

To select the prototypes/exemplars or cluster representatives we use two steps. As our

prototypes we desire the N prototypes in the training set whose removal cause the most error in

a nearest-neighbor classification. We assume a large training set (NT samples) for our multiclass

problem (so large that simple clustering techniques cannot produce a suitable set of clusters). We

first use standard techniques 30 for sample-number reduction to obtain a modest number of

prototypes NR. This "reduced nearest-neighbor" clustering technique divides the NT samples

into two groups (A and B), where the samples in A classify all NT samples correctly using a

nearest-neighbor technique. Initially, all samples are in group B. The samples in A are used as

the prototypes in a nearest-neighbor classifier. Each sample in B is sequentially presented to the

nearest-neighbor classifier. If it is incorrectly classified, it is added to A. This procedure is

repeated until the samples in group A can correctly classify all NT samples. (Typically around

5% to 30% of the training samples are still present in NR and this is still too large a number of

P2 neurons.)

Thus we employ a second step to further reduce the number of prototypes (clusters) to an

acceptable number N. To achieve this we remove the first prototype, use the remaining NR-1

samples in a nearest-neighbor classifier to classify the NT original samples, and calculate the

number of misclassifications. We then remove only the second prototype, and repeat the above



10

procedure with the remaining A'R-1 samples. This procedure continues until the removal

(separately) of each of the NR prototypes has been tested. If N is prespecified, we keep the N

prototypes whose removal would cause the most errors. We can also use the number of errors

obtained by removing each prototype to select N (i.e. we select N that results in no more than a

given error rate or for which there is a jump in the number of errors produced). We insure that

at least one prototype is chosen from each class. Insuring that we keep one prototype per class

has not been a problem in our benchmarks (i.e. if the prototypes are ordered by their error rate,

we do not find a number of consecutive prototypes in one class before one from another class

occurs). In our initial benchmarks we have not found significant branch points or jumps in the

error rates of the ordered samples. There is also no restriction that the same number of

prototypes be selected from each class (the data will determine this). Considerable flexibility is

possible in how the N prototypes are selected since training will refine the initial choices, and

thus this issue is not of major concern.

This procedure does not account for the fact that, when several samples are not included as

prototypes, performance will be worse than when only one of the samples is omitted. However,

the purpose of selecting prototypes (or cluster representatives) is only to provide a reasonable or

approximate initial selection (the neural net adaptations of these initial choices address the

global problem).

We note that use of a nearest-neighbor technique for training is acceptable, but it is not

suitable for classification (where on-line real-time requirements exist). The combination of our

nearest-neighbor prototype selection and ACNN update algorithm will be shown to require fewer

iterations than BP. To quantify the significance of this, we now briefly address the number of

operations required to select prototypes and relate it to the number of operations required in one

BP iteration on all NT training samples. For each sample, our prototype selection algorithm
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must calculate lhe dislance to all other points in the training set. For all NT samples, the

calculation of the distances from all points to all points (i.e. the number of distance calculations

required for one pass through the NT training samples) is approximately 0.5NT 2 (we precalculate

this once and use the 0.5 factor since the calculations are symmetric). In BP, all NT samples are

presented and after each sample we must calculate the activities of all N neurons (N hidden

neurons are assumed and the calculation of the activities of the output neurons is ignored), i.e.

Ar AT calculations are required. The calculation times for the operations in the two cases are

equivalent, each is a VIP of dimension equal to that of the feature space used (the calculation

times for each operation are exact for the case of layer 1 and 2 neurons). If the additional

number of BP iterations required is I, then for our algorithm to be computationally efficient, we

require

o.5AT7 < NTVI. (3)

Since AT>>N our algorithm may not offer a significant advantage in training time (once N is

fixed in BP) unless I is very large.

In obtaining the result in Eq. (3), we assumed that all NT samples were used in selecting

the N prototypes. We have found that we need only use approximately 5N randomly selected

samples from the full set of NT in our prototype selection (N is the number of prototypes or

cluster neuron used at P2 and we have always found that 2 to 5 neurons per class suffice). Thus,

we employ our algorithm using SN samples (not NT). The inequality to be satisfied is now

0.5(5N)2 < N7NI

25N < 2N 7 J. (4)

To further evaluate this, we assume N 1OON (this is quite typical for distortion-invariant

problems to adequately represent all distortions). We then find
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25 < 2001 (5)

which is independent of N. This inequality is always satisfied. As we shall see, BP has always

required at least on the order of I=100 more iterations of the full training set than has our

ACNN algorithm. In this case

25 < 2X10 4, (6)

and the computational time savings of our algorithm is quite significant.

Thus, to summarize, in the two steps of our prototype selection algorithm we use 5N

random samples from the full NT set. We select the number of hidden neurons N to be 2 to 5

times the number of classes (depending on the difficulty of the problem). Section IV details these

choices for two examples.

M1.2. Initial P -P2 weights

We now address how we select the initial P1-P 2 (input-to-hidden layer) weights. We denote

the weight between input neuron j and hidden neuron i by w, We denote the vector position of

prototype i in our D-dimensional feature space by p, (i.e. this is the feature vector for prototype

i) and element j of it by pij We can now describe the input weights from P, to P2 as

wi. fpij for j' DI,...,D(7

-(1/2)1 p jfor j-D+1.

i=1

The first D (out of D+I) elements of each weight vector from P1 to layer-two neuron i are thus

the feature vector pi associated with that prototype. The last (D+I) input neuron activity is

always "1' and its weight to hidden layer neuron s is associated with its LDF threshold. We

choose these initial weights since they ensure that the classifier initially implements a nearest-

neighbor classifier based on the prototypes, as we now detail.
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Each hidden neuron i has connections from all D+I input neurons and thus has a weight

vector w i associated with it. For an input xa, the input to neuron i in layer two is

wttx a ! pit Xa - 0.5 Pi (8)

where the first term is the contribution to the VIP from the first D weights and the last term is

the contribution due to the additional D+1 input neuron. We rewrite Eq. (8) as

.tax a = (0.5)2Pitxa-O.Pitp .Sxatxa-O.5x atXaaWa a

= 0.5 [Xa tXa(pitpi-2pitXa+XatXa) ]

= 0.5(1X a12 - IPi-XaI 2). (9)

From Eq. (9) we see that the VIP is related to the Euclidean distance (denoted by J ) between

the input xa and the prototype pt associated with hidden neuron i. The choice of weights in Eq.

(7) thus achieves nearest-neighbor classification since it ensures, from Eq. (9), that the hidden

neuron closest to xa will have the largest input (since the second term in Eq. (9) is then smallest)

and will be most active.

M1.3. Training (weight update) algorithm

We now detail how we update the initial P 1-P 2 weights to achieve improved piecewise

linear decision surfaces. We input each of the full NT set of training vectors xa. For each xa we

calculate the most active hidden neuron i(c) in the proper class c and the most active one i(e) in

any other class (?). We denote the weight vectors for these two layer-two neurons by wi(c) and

wi() and their VIPs with the input by wi(c)tXa and w i(E)xa . The perceptron error function

(criterion function) Ep used is shown in Fig. 2. The solid (dashed) curves correspond to the true

(false) classes 1 and 2 cases. The offset S is a safety margin that forces training set vectors which

are classified correctly by a small amount (less than S) to also contribute to the criterion

function. As discussed elsewhere 26 we chose S=0.05 (all features were normalized between 0 and

1). The use of S forces the classifier to try to classify all training samples correctly by at least an
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amount, S, improving test set performance (and thus generalization).

For each training sample in NT we add an error (penalty) to E, The error added is

E=O if wi(C)t a > wi(e)tXa+S (10)

S+(wi(I)-wi(c))tXa otherwise,

where the E=O case corresponds to the situation when the proper layer-two neuron is most

active (by an amount S above the most active false neuron) and where the other case

corresponds to the situation when the false class VIP is larger than the true class VIP, or within

S of it.

After all NT training samples have been run through the system, we accumulate all of

these errors or energies (all are positive or zero). We also accumulate the gradients Vw E. From
t

Eq. (10), by taking the derivative with respect to w we see that V W .E is zero for all i when an
S

input is classified correctly by more than S; otherwise, it equals either xa (if input a should be

classified into the same class as cluster-neuron i) or -xa (if a is incorrectly classified by cluster

neuron i). Thus, the sum of all the contributions to Vw.E equals the sum of the ±xa for

samples erroneously classified (or correctly classified but with a margin less than S) in layer-two

clusters. We then use VW .E to adapt the weights w by the conjugate-gradient algorithm. We
S

then repeat presentation of the training set (a new iteration), calculate the new errors E and

Vw . E and update the weights accordingly. This procedure repeats until satisfactory performance

on the test set is obtained.

We considered other LDFs (Ho-Kashyap, Fisher, FukanagaKoontz etc.). However, these

LDFs require more calculation than our current algorithm docs to update the weights. Thus, for

computational reasons, our present choice (perceptron criterion) is preferable.
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111.4. Input PI neuron representation space

In our distortion-invariant multiclass pattern recognition applications, we use a wedge-

31sampled magnitude Fourier transform feature space , since this feature space can easily be

produced optically. Fig. 3(a) shows the standard architecture that produces the Fourier

transform at P2 of the PI input 2-D image data. Fig. 3(b) shows the standard wedge-ring

detector used at P2 The wedge features provide scale invariance and the ring features provide

in-plane rotation invariance. Our distortion-invariant data will involve different aspect views of

several objects (and not in-plane distortions). Thus we chose the wedge features (this provides

scale invariance, although we do not include scale distortions in our test data). We obtain

aspect-view invariance by training on various aspect-distorted object views.

TV. Test results

We consider two databases: an artificial set of data 1 5' 26 (to demonstrate the nonlinear

surfaces produced using only two features) and a set of three aircraft with various azimuth and

elevation (3-D) distortions present. We refer to these as benchmarks 1 and 2.

IV.1. Benchmark 1 results (artificial data)

An artificial set of 383 samples in three classes (181 in class 1, 97 in class 2 and 105 in class

3) with 2 features was generated with samples as shown in Fig. 4. This problem definitely

requires a nonlinear decision boundary and the results can be shown in the 2-D feature space.

This is the purpose of this example, since no separate test data exist. The neural net used

contained three input neurons (two for the features plus one for the threshold), six hidden

neurons (two per class) and three output neurons (one per class). All NT samples were used to

select the prototypes. The first "reduced nearest-neighbor clustering" produced 31 prototypes

(8.1% of the total NT) that gave an error rate P-0% for all samples. The six prototypes

whose removal gave the most error were then selected in stage two.



.-\ft(er 80 iterations of the full training set, the classification) rate (defined as the percentage

of test samples correctly classified) was constant at 97.1'% with our ACNN algorithm . After 300

iterations the BP classification rate was constant at approximately the same value (96.3%).

(This result is the average obtained over 10 runs with different random initial weight sets.) The

final input layer weights to the six hidden layer neurons correspond to six straight lines (LDFs)

in the feature space. For BP these six lines would define the decision surface. In the ACNN this

is not the case (because of the winner-takes-all action at P2). The decision-surface lines were

determined by successively providing all of the possible feature vectors on a grid of xl-X 2 values

(for both xI and x2 in the interval [0,1]) to the classifier, and for each feature vector determining

the class into which it is classified by the neural net. The decision boundaries indicate where a

transition in classification occurred. The boundaries thus obtained are shown in Fig. 5. They

produce four separate regions of feature space (two correspond to the same class and the others

correspond to the other two classes).

From inspection of Fig. 4 one would estimate that a piecewise-linear decision surface with

at least five straight-line sections would be needed to separate the data adequately and that

about ten errors might be expected. Thus at least five hidden neurons are expected to be needed.

In Fig. 4 we see that, with six hidden neurons, approximately 10 classification errors are made,

producing the error rate of 97.1%.

Figure 6 compares the classification rate for the two neural nets and for a multivariate

Gaussian classifier. Both neural nets give comparable classification rates (97.1% and 96.3%)

after convergence, whereas the Gaussian classifier's performance is worse (89.5%) and by

definition does not vary with the number of iterations of the training set. The speed of learning

of the ACNN is much faster (convergence in 80 iterations) than for BP (approximate convergence

in 300 iterations). From Eq. (4) this represents approximately an additional
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ATNJ=(383)(6)(220)=505560 \'IP calculations requircd ,,'ith B3'. The prototype selection

steps in our ACNN algorithm required approximately 0.5NT2 (0.5)(383) 2 73350 VIPs and

thus the total number of calculations and hence training time for our ACNN is considerably less

than the learning time for BP. We reran the prototype selection portion of our ACNN algorithm

using only 5N=30 samples randomly selected from the 383, insuring that we obtain at least one

prototype per class. The decision boundaries produced are shown in Fig. 7. As can be seen, the

decision boundaries are virtually identical; the resulting error rates differ by only 0.2% (96.9%

classification was obtained after 100 iterations). This was now achieved with only 0.5(30)2--450

VIPs for prototype selection.

This data set therefore indicates that similar performances can be obtained with BP and

ACNN, with ACNN training appreciably faster than BP. We have also seen that the time for

prototype selection with ACNN can be made negligible by using a reduced number of learning

samples, without affecting performance adversely.

IV.2. Benchmark 2 results (3-D distorted aircraft data)

As our second data set, we used synthetic distorted aircraft imagery and our wedge-

sampled Fourier feature space. The imagery used were three aircraft (F-4, F-104 and DC-10)

binarized to 128x128 pixels with each aircraft occupying about the central 100x64 pixels. As our

training set, we used 630 images of each aircraft (a total of NT1890 training set samples). The

images were different azimuth views (with the aircraft viewed from different angles left to right)

and elevation views (with the aircraft viewed from different angles above or below its center

line). The range of azimuth angles used covered -85 o to +85 * and the elevation angle was

varied from 0 * to 90 o with 5 increments in each angle (the same image results if negative

elevation angles are used). The input neuron representation space was a 32 element feature space

(the 32 wedge magnitude Fourier samples). The test set used consisted of 578 orientations of



each aircraft not present in the training set (these were views at internal angles about 2.5 ' in

each direction from those in the training set). Fig. 8 shows three distorted versions of each

aircraft. The left image is the top-down view with 0 * variation in elevation and azimuth. The

central image shows a view from an azimuth angle of 45 * to the left. The right image for each

object shows an image with elevation angle of 45 ° .

The three-layer ACNN used contained 33 input neurons, 9 hidden neurons and three

output neurons (one per class).

Fig. 9 compares the speed (number of iterations of the full training set) and classification

performance for the two neural nets and the Gaussian classifier. Both neural nets yield the same

classification rate (98.6%) compared to only 89% for the Gaussian classifier. BP converges in 350

iterations and our ACNN in fewer (180) iterations. As with the two-dimensional data set, a

reduced data set for prototype selection can be employed successfully. It was found that with

5N=45 samples used for prototype selection, 98.6% classification performance was obtained

after 180 iterations. With this reduced number of samples, the time for prototype selection is

negligible compared with the time for a single iteration, so that the relative training times are

again determined by the number of iterations required for each method. Thus, ACNN requires

approximately 50% of the training time of BP.

V. Optical and optical/electronic realization

Many choices are possible for the role of optics i4 the learning and classification stages of

our ACNN. These are now discussed. The feature space (wedge-sampled magnitude Fourier

transform) should be optically calculated (even in learning) since this feature space is easily

produced optically 32 , 33 and since we will use the optically produced feature space in our on-line

classification. The two steps of prototype selection are best performed electronically - since they
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are off-line operations and require manipulation of stored data and control operations most

compatible with digital electronics. The distance calculations required in the nearest-neighbor

calculations can be performed on an optical VIP architecture (we now discuss this and the use of

optics in the learning stage).

Once the initial P-P2 weights have been chosen, the learning stage can be implemented in

optics or electronics. Fig. 10 shows one such architecture. The input sample xa is entered at PI

(on LEDs, laser diodes or a 1-D spatial light modulator (SLM)). It is imaged onto the initial set

of N weight vectors (for the N prototype hidden layer neurons) which are arranged on rows at

PA (with the first two to five rows corresponding to the prototypes for class 1, the next two to

five rows being the prototypes for class 2, etc.). Thus the rows at PA are the initial weights as

in Eq. (7). The VIPs of xa and all of the w i weight vectors at PA are formed on a linear

detector array at P 2 . The PA rows and P 2 elements are separated into C groups (the C classes).

The maximum VIP element in each class is determined (simple comparator logic is sufficient

since the number of prototypes per class is small). This provides us with wi(,) tXa and w i()tXa in

Eq. (10). Bipolar values for w i should be handled by spatial multiplexing at PA and subtraction

of adjacent P 2 outputs. Alternatively, the PA data can be placed on a bias (but this increases

dynamic-range requirements). The weights must be updated after each iteration of the training

set. If PA is a microchannel spatial light modulator 3 4 (or similar device) that can record positive

and negative data (with a bias on the device), we can update the weights by adding and/or

subtracting the appropriate values for each weight. These updates to the weights at PA are

various combinations of the training vectors xa. These could be calculated in electronics, entered

sequentially at PI and (with a mechanism to activate only selected rows at PA) we could update

PA as required. Alternatively, we could repeat each xa at P1 and vary the input illumination and

the PA row accessed and hence control the amount of each xa added to or subtracted from each

weight vector at PA. The digital control required, the complexity of the system (a modulated
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light source to k-ontrol the amount of each x a used, access to only one row of PA at a time), the

need for A' accesses of PA for each of the NT vectors x a' and the PA SLM requirements make

the electronic calculation of the updated weight vectors and the electronic off-line

implementation of the learning stage preferable (at present). As PA SLM technology matures, it

would probably be realistic to calculate all VIPs optically, determine the new weights

electronically, and reload these directly into PA after each iteration of the training set. However,

at present, we assume that all learning is electronic (since it is off-line).

Once learning has been completed, the P 1 -to-P 2 weights are fixed and the input-to-hidden

layer neurons and weights (the P 1 -to-P 2 neuron system) can be implemented on an optical VIP

system (such as P 1 to P 2 of Fig. 10) with a fixed mask at PA* The number of PI neurons is

modest (the input neuron representation is a compact feature space), and the number of P 2

neurons is also small (typically less than five times the number of classes). Our ACNN requires a

winner-takes-all (WTA) maximum selection of the most active P 2 neuron. This can be

implemented with a WTA neural network or in standard comparison techniques. Since the

number of P 2 neurons (N) is small, standard electronic WTA techniques are preferable (we

quantify this below). Since the P 2 -to-P 3 hidden-to-output neuron weights are fixed and are all

unity or zero, the P 2-to-P 3 weights simply perform a mapping and can easily be implemented in

electronics. Thus, we implement the input-to-hidden layer neuron weights and calculations

optically, and the hidden layer neuron maximum selection (WTA) and the hidden-to-output

neuron mapping in electronics. Fig. 11 summarizes the learning and classification stages in block

diagram form with attention to which operations are performed in optics and which in

electronics.

The two WTA electronic techniques possible (in classification) are to use an operational

amplifier peak detector to scan all N outputs at P 2 or to employ a parallel digital technique. In
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the digital technique, the A' outputs are A ID converted, tach pair of 1P, outputs (1 and 2, 3 and

4, etc.) are pairwise compared and the maximum of each pair is obtained. Pairwise comparisons

of the N/2 outputs are then performed and the procedure is continued for log 2 N levels until the

maximum is obtained. For 100 input and hidden neurons, one matrix-vector multiplication

(required to update the P 2 neuron activities) requires about 10,000 additions and 10,000

multiplications, whereas maximum selection requires only about 100 comparisons. Thus, the

maximum-selection is typically negligible computationally compared with the neuron-update

stage, and can be implemented in serial electronic hardware without sacrificing the speed of the

system. We thus implement the WTA operation in electronics using comparators rather than

with a neural net. The specific electronic WTA technique chosen depends on the accuracy and

speed required. Since these operations are required once for each test input in classification, the

WTA time required is set by the rate at which new input image data occurs and the rate at

which its features can be calculated.

VI. Summary, conclusions and discussion

A new three-layer adaptive-clustering neural net (ACNN) has been described. It provides

for a new procedure to select the number of hidden layer neurons (we use several neurons per

class, each being a prototype or cluster representative of a particular class) and provides initial

(non-random) input-to-hidden layer neuron weights. These initial weights are selected using

standard pattern recognition clustering techniques. They are then updated during learning using

a new neural net adaptive supervised learning algorithm. This results in a new neural net that

combines standard pattern recognition and neural-net techniques to produce piecewise-linear

decision surfaces from linear discriminant functions. The input neurons are analog and of low

dimensionality (a feature space with inherent distortion invariances). Quantitative data show

that the learning time and number of calculations required in our new ACNN is significantly

faster (by a factor of 2 to 4) than the more well-studied BP neural net. We also found that the



use of a conjugate-gradient (rather than gradient descent) update algorithm sigiificantly speeds

up BP.

BP and the ACNN will usually not result in similar weights since BP uses neurons for

other operations besides clustering, because BP has no WTA competition in its hidden layer as in

the ACNN and because the hidden-to-output weights are different in BP and only perform

mapping in the ACNN. However, the decision boundaries that result are usually very similar

(with the ACNN decision boundaries generally being a piecewise-linear approximation to the

more curved ones in BP). Thus the two classifiers employ different means to similar ends, with

the ACNN providing faster training without the need to select many empirical parameters. Since

only one hidden neuron in ACNN is dominant, piecewise-linear surfaces result and more hidden

neurons may be needed. Our intent is not to compare BP and our ACNN, rather we note the

attractive properties of our new neural net. Besides providing a new way to select the hidden

neurons, our neural-net algorithm has only one ad-hoc parameter to be empirically selected (the

number of hidden neurons). Changes in ACNN weights during training provide information on

the data that can be of use in better understanding results and in extending results to other

cases (other neural nets do not have this property). For example, in sequential gradient descent

updating algorithms (the delta rule) different results occur depending on the order in which the

training data are presented and depending on the random initial weights (by comparison, the

ACNN provides consistent results).
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